

Endbericht Kommunale Wärmeplanung Gemeinde Glandorf

Glandorf, 08. September 2025

Inhaltsverzeichnis

lr	ıhaltsverz	reichnis	2
Α	bbildung	sverzeichnis	5
Α	bkürzung	jsverzeichnis	8
G	ilossar		11
Z	usammer	nfassung	22
0		tung	
U			
		lotivation, Rechtsrahmen und Aufgabenstellung	
		ahmenbedingungen des Projekts	
		rojektstruktur	
		ystematik der durchgeführten Wärmeplanung und Struktur dieses Berichts	
1	Besta	ndsanalyse	30
	1.1 A	ufgabenstellung	30
	1.2 D	atenbasis	31
	1.2.1	Datenquellen	31
	1.2.2	KEAN-Wärmeatlas	31
	1.2.3	Daten von Versorgungsunternehmen und Erzeugungsanlagen	32
	1.2.4	Zusatzinformationen und Korrekturen	32
	1.2.	4.1 Adressdaten	33
	1.2.	4.2 Verbrauchsdaten	33
	1.2.	4.3 Weitere Attribute	34
	1.2.	4.4 Denkmalschutz und Baublöcke	35
	1.2.	4.5 Schornsteinfegerdaten	35
	1.2.	4.6 Finale Herleitung	35
	1.2.	4.7 Treibhausgasemissionsfaktoren	36
	1.3 B	estandsanalyse: Status quo der Wärmeversorgung in Glandorf	37
	1.3.1	Endenergieverbrauch und Treibhausgasemissionen für Wärme	37
	1.3.	1.1 Absoluter Endenergieverbrauch und Emissionen	37
	1.3.	1.2 Anteil grüner Energien am Endenergieverbrauch	39
	1.3.	1.3 Leitungsgebundene Wärme	39
	1.3.	1.4 Erneuerbarer Anteil an der leitungsgebundenen Wärme	39
	1.3.	1.5 Dezentrale Erzeuger	39
	1.3.2	Beheizungsstruktur	40
	1.3.	2.1 Heizungsalter	40
	1.3.	2.2 Wärmeverbrauchsdichten	42
	1.3.		
	1.3.	2.4 Räumliche Verteilung der Energieträger und Treibhausgasemissionen	44
	1.3.	2.5 Endenergieverbrauch nach Energieträgern	46
	1.3.	2.6 Anzahl dezentraler Erzeuger	47
	1.3.3	Gebäudestruktur und Großverbraucher	49
	1.3.	3.1 Gebäudetypen	49
	1.3	3.2 Gebäudealter	50

		1.3.3.3 Großverbraucher	52
	1.3	3.4 Infrastruktur und Erzeugung	54
		1.3.4.1 Wärmenetze	54
		1.3.4.2 Gasnetze	55
		1.3.4.3 Abwasserleitungen	55
		1.3.4.4 Wärmeerzeuger	56
		1.3.4.5 Speicher	57
		1.3.4.6 Wasserstoff	57
	1.4	Ergebnisse und weiteres Vorgehen	58
2	Po	otenzialanalyse	59
_	2.1	Aufgabenstellung	
	2.1	Datenbasis	
	2.3	Analyse	
		· · · · · · · · · · · · · · · · · · ·	
		Potenzial zur Deckung des Restbedarfs durch "grüne Wärme" und Abwärme 2.3.2.1 Einleitung	
		2.3.2.2 Solarthermie	
		2.3.2.3 Geothermie	
		2.3.2.4 Biomasse	
		2.3.2.5 Umweltwärme	
		2.3.2.6 EE-Strom zur Wärmeerzeugung	
		2.3.2.7 Abwärme	
		3.3 CO ₂ -neutrale Gase	
	2.4	Ergebnisse	
_		· ·	
3	Zie	elszenarien und Entwicklungspfade	84
	3.1	Aufgabenstellung	84
	3.2	Wärmebedarfsentwicklung: Bedarfsreduktion und Restwärmebedarf über die Zeit.	84
	3.2	2.1 Methodik	85
	3.2	2.2 Ergebnisse	
	3.3	Wärmebedarfsdeckung	
	3.3	9	
		3.3.1.1 Hintergründe, Annahmen und Modellbeschreibung	
		3.3.1.2 Ergebnisse	
	3.3	3.2 Zukünftige Wärmenetz- und Gasnetzinfrastruktur	
		3.3.2.1 Wärmenetze	
		3.3.2.2 Gasnetze	
	3.3	3.3 Entwicklung der Wärmeversorgung	
		3.4 Voraussichtliche Wärmeversorgungsgebiete und Wärmeversorgungsarten	
	3.3	3.5 Zusammenfassung	121
4	St	rategie und Maßnahmenkatalog	123
	4.1	Maßnahmenkatalog	123
5	Pr	ozessübergreifende Elemente der kommunalen Wärmeplanung	137
	5.1	Beteiligung von Verwaltungseinheiten und allen weiteren relevanten Akteuren	138
	5.2	Verstetigungsstrategie	
			_

Inhaltsverzeichnis

5.3	5	
5.4		
6 An	hang	145
6.1	Anteil sonstiger Energieträger am Endenergieverbrauch	145
6.2	Anzahl sonstiger dezentraler Wärmeerzeuger	148
6.3	Ausschlussgebiete Freiflächenpotenziale	151
6.4	Wärmevollkostenvergleich der dezentralen Beheizungsoptionen	152

Abbildungsverzeichnis

Abbildung 1: Die Wärmewende als lokale Aufgabe25
Abbildung 2: Gemeindegebiet Glandorf mit den einzelnen Ortsteilen
Abbildung 3: Projektstruktur zur Erstellung der kommunalen Wärmeplanung Glandorf 28
Abbildung 4: Arbeitsschritte zur Erstellung der kommunalen Wärmeplanung29
Abbildung 5: Das Wesentliche zur Ausgangslage in Glandorf
Abbildung 6: Anteile der Energieträger am Endenergieverbrauch für Wärme (links) und an den
korrespondierenden Treibausgasemissionen (rechts) in Glandorf
Abbildung 7: Anteile der Sektoren am Endenergieverbrauch für Wärme (links) und an den
korrespondierenden Treibausgasemissionen (rechts) in Glandorf
Abbildung 8: Anteil "grüner" Energien am Endenergieverbrauch in Glandorf
Abbildung 9: Anteile der Wärmeerzeugerarten in Glandorf40
Abbildung 10: Verteilung der Heizungsalter der Heizungen in Glandorf41
Abbildung 11: Anteil der Heizungen (nach Anzahl), die älter sind als 30 Jahre, in Glandorf (auf
Baublöcke bezogen) ¹ 42
Abbildung 12: Wärmeverbrauchsdichte in Glandorf (auf Baublöcke bezogen) ¹ 42
Abbildung 13: Wärmeliniendichten in Glandorf¹44
Abbildung 14: Überwiegende Energieträger in Glandorf (auf Baublöcke bezogen) ¹ 45
Abbildung 15: Spezifische Treibhausgasemissionen in Glandorf (auf Baublöcke bezogen) 1 45
Abbildung 16: Anteil Gas am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen) 1 46
Abbildung 17: Anteil Heizöl am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen) ¹ 47
Abbildung 18: Anzahl Erdgas Wärmeerzeuger in Glandorf (auf Baublöcke bezogen) ¹ 48
Abbildung 19: Anzahl Heizöl Wärmeerzeuger in Glandorf (auf Baublöcke bezogen) ¹
Abbildung 20: Verteilung der Gebäudetypen nach Anzahl (links) und nach Endenergieverbrauch
(rechts) in Glandorf
Abbildung 21: Überwiegende Gebäudetypen nach Endenergieverbrauch in Glandorf (auf Baublöcke bezogen) ¹ 50
Abbildung 22: Verteilung der Baualtersklassen nach Anzahl (links) und nach
Endenergieverbrauch (rechts) in Glandorf51
Abbildung 23: Überwiegende Baualtersklassen nach Endenergieverbrauch in Glandorf (auf
Baublöcke bezogen) ¹ 51
Abbildung 24: Auswertung des Endenergieverbrauchs nach Energieeffizienzklassen in Glandorf
Abbildung 25: Großverbraucher in Glandorf ¹ 53
Abbildung 26: Wärmenetze in Glandorf ¹ 54
Abbildung 27: Darstellung der mit Erdgas versorgten Gebiete in Glandorf (auf Baublöcke bezogen) ¹
Abbildung 28: Wärmeerzeugungsanlage des Wärmenetzes in Glandorf¹56
Abbildung 29: Wärmebedarf im Status quo und nach Nutzung des gesamten theoretischen
Reduktionspotenzials in Glandorf
Abbildung 30: Sanierungspotenzial in Glandorf ¹ 62
Abbildung 31: Erneuerbare Wärmepotenziale im "Grüne-Wärme-Rad" von BET
Abbildung 32: Exemplarisches Erzeugungs- bzw. Bedarfsprofil für Wärmenetz mit Solarthermie
im Jahresverlauf (8.760 Stunden)
Abbildung 33: Potenzial Dachflächen-Solarthermie in Glandorf¹

Abbildung 34: Potenzielle Freiflächen für die Wärmeerzeugung in Glandorf ¹	66
Abbildung 35: Potenzial dezentraler Sole-Wärmepumpen in Glandorf ¹	69
Abbildung 36: Potenzial Luft-Wärmepumpe in Glandorf ¹	73
Abbildung 37: Potenzial Dachflächen-Photovoltaik in Glandorf ¹	76
Abbildung 38: Abhängigkeit des Gelingens der Wärmewende von individuellen	
Wirtschaftlichkeitserwägungen	86
Abbildung 39: Absoluter bzw. relativer Wärmebedarfsrückgang in GWh und Prozent für	
Glandorf	87
Abbildung 40: Definition der möglichen Kunden-Technologie-Kombinationen (KuTeK)	90
Abbildung 41: Variable Kosten der Endkunden in ct/kWh (real 2025, ohne MwSt.)	94
Abbildung 42: Wärmevollkosten je Technologie für ein Einfamilienhaus - D bis F (real 2025,	,
ohne MwSt.)	96
Abbildung 43: Wärmevollkosten je Technologie für ein kleines Mehrfamilienhaus – A+ bis C	;
(real 2025, ohne MwSt.)	
Abbildung 44: Wärmevollkosten je Technologie für ein mittleres Mehrfamilienhaus – A+ bis	С
(real 2025, ohne MwSt.)	97
Abbildung 45: Wärmevollkosten je Technologie für ein großes Mehrfamilienhaus – A+ bis C	;
(real 2025, ohne MwSt.)	
Abbildung 46: Darstellung der bestehenden, der ins Zielszenario einbezogenen und der	
potenziellen Wärmenetze für Glandorf ¹	. 101
Abbildung 47: Endenergieverbrauch nach Energieträgern in Glandorf über die Zeit (Anlage	2,
Nr. III. 1, 4 und 6)	. 107
Abbildung 48: Endenergieverbrauch nach Sektoren in Glandorf über die Zeit (Anlage 2, Nr.	
1)	. 108
Abbildung 49: Treibhausgasemissionen nach Energieträgern in Glandorf über die Zeit (Anla	ige
2, Nr. III. 2)	. 109
Abbildung 50: Treibhausgasemissionen nach Sektoren in Glandorf über die Zeit (Anlage 2,	
III. 2)	
Abbildung 51: Energieträgereinsatz für Wärmenetze in Glandorf (Anlage 2, Nr. III. 3)	
Abbildung 52: Anteil der Energieträger der leitungsgebundenen Wärmeversorgung am	
Endenergieverbrauch in Glandorf über die Zeit (Anlage 2, Nr. III. 3)	. 111
Abbildung 53: Anzahl und Anteil der Gebäude mit Anschluss an Wärmenetze bzw. an Gasr	
Abbildung 54: Vorrangige Wärmeversorgungsgebiete Status quo in Glandorf ¹	. 114
Abbildung 55: Voraussichtliche, vorrangige Wärmeversorgungsgebiete 2030 in Glandorf	
Abbildung 56: Voraussichtliche , vorrangige Wärmeversorgungsgebiete 2035 in Glandorf	
Abbildung 57: Voraussichtliche , vorrangige Wärmeversorgungsgebiete 2040 in Glandorf	
Abbildung 58: Übersicht über die voraussichtlichen Wärmeversorgungsgebiete in Glando	
Abbildung 59: Voraussichtliche Eignung für eine Wärmeversorgung aus Wärmenetzen in	
Glandorf ¹	. 118
Abbildung 60: Voraussichtliche Eignung für eine dezentrale Wärmeversorgung in Glandor	
Abbildung 61: Voraussichtliche Eignung für die Wärmeversorgung mit grünem Methan in	
Glandorf ¹	. 121
Abbildung 62: Anteil Biomasse am Endenergieverbrauch in Glandorf (auf Baublöcke bezog	
Abbitating 62.7 them Biernades and Enderleigheverbrader in Clarider (auf Badbiecke 56269	,

Abbildung 63: Anteil Strom am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen)1. 14	.5
Abbildung 64: Anteil Umweltwärme am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen) 1	ıs
Abbildung 65: Anteil Flüssiggas am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen	
1	
Abbildung 66: Anteil Wärmenetz am Endenergieverbrauch in Glandorf (auf Baublöcke bezoger	
¹	•
Abbildung 67: Anteil Steinkohle am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen)	
Abbildung 68: Anzahl Biomasse Wärmeerzeuger in Glandorf (auf Baublöcke bezogen) 1 14	
Abbildung 69: Anzahl Wärmepumpen in Glandorf (auf Baublöcke bezogen) 1	
Abbildung 70: Anzahl Nachtspeicherheizungen in Glandorf (auf Baublöcke bezogen) ¹	
Abbildung 71: Anzahl Flüssiggas Wärmeerzeuger in Glandorf (auf Baublöcke bezogen) 1 15	
Abbildung 72: Anzahl Übergabestationen in Glandorf (auf Baublöcke bezogen) 1	
Abbildung 73: Anzahl Steinkohle Wärmeerzeuger in Glandorf (auf Baublöcke bezogen) 1 15	
Abbildung 74: Ausschlussgebiete der Freiflächenpotenziale ¹	
Abbildung 75: Gebäudetyp 1 der KuTeK	
Abbildung 76: Wärmevollkosten je Technologie für ein Einfamilienhaus - A+ bis C (real 2024,	_
ohne MwSt.)	3
Abbildung 77: Gebäudetyp 2 der KuTeK	
Abbildung 78: Wärmevollkosten je Technologie für ein Einfamilienhaus - D bis F (real 2024,	
ohne MwSt.)	54
Abbildung 79: Gebäudetyp 3 der KuTeK	
Abbildung 80: Wärmevollkosten je Technologie für ein Einfamilienhaus - G bis H (real 2024,	
ohne MwSt.)	55
Abbildung 81: Gebäudetyp 4 der KuTeK in klein/mittel/groß	6
Abbildung 82: Wärmevollkosten je Technologie für ein kleines Mehrfamilienhaus - A+ bis C (re	al
2024, ohne MwSt.)	6
Abbildung 83: Wärmevollkosten je Technologie für ein mittleres Mehrfamilienhaus - A+ bis C	
(real 2024, ohne MwSt.)15	7
Abbildung 84: Wärmevollkosten je Technologie für ein großes Mehrfamilienhaus - A+ bis C (rea	al
2024, ohne MwSt.)	7
Abbildung 85: Gebäudetyp 5 der KuTeK in klein/mittel	8
Abbildung 86: Wärmevollkosten je Technologie für ein kleines Mehrfamilienhaus - D bis F (real	
2024, ohne MwSt.)	8
Abbildung 87: Wärmevollkosten je Technologie für ein mittleres Mehrfamilienhaus - D bis F (re	al
2024, ohne MwSt.)	9
Abbildung 88: Wärmevollkosten je Technologie für ein großes Mehrfamilienhaus - D bis F (real	
2024, ohne MwSt.)	9
Abbildung 89: Gebäudetyp 6 der KuTeK in klein/mittel	0
Abbildung 90: Wärmevollkosten je Technologie für ein kleines Mehrfamilienhaus - G bis H (rea	I
2024, ohne MwSt.)	0
Abbildung 91: Wärmevollkosten je Technologie für ein mittleres Mehrfamilienhaus - G bis H	
(real 2024, ohne MwSt.)16	
Abbildung 92: Wärmevollkosten je Technologie für ein großes Mehrfamilienhaus - G bis H (rea	l
2024, ohne MwSt.)	i1

Abkürzungsverzeichnis

a Jahr

AP Arbeitspaket

BDEW Bundesverband der Energie- und Wasserwirtschaft e.V.

BEG Bundesförderung effiziente Gebäude

BET Büro für Energiewirtschaft und technische Planung GmbH

BEW Bundesförderung effiziente Wärmenetze

BGA Biogasanlage

BHKW Blockheizkraftwerk

BISKO Bilanzierungs-Systematik Kommunal

BMWE Bundesministerium für Wirtschaft und Energie

BMWK Bundesministerium für Wirtschaft und Klimaschutz

BMWSB Bundesministerium für Wohnen, Stadtentwicklung und Bau-

wesen

COP Coefficient of Performance (für Wärmepumpen)

DSGVO Datenschutzgrundverordnung

EE Erneuerbare Energien

EEG Erneuerbare-Energien-Gesetz

EFH Einfamilienhäuser

EnEfG Energieeffizienzgesetz

EU Europäische Union

FFH Flora Fauna Habitat (-Schutzgebiete)

FNB Fernleitungsnetzbetreiber (Gas)

GEG Gebäudeenergiegesetz

GHD Gewerbe, Handel und Dienstleistungen

GIS-Daten Geografisches-Informations-System (-Daten)

GMFH Große Mehrfamilienhäuser

GW Gigawatt (Leistung)

GWh Gigawattstunden (Energie)

HDR Hot-Dry-Rock

JAZ Jahresarbeitszahlen (für Wärmepumpen)

K Kelvin (Temperaturdifferenz)

KEA-BW Klima-Energie-Agentur Baden-Württemberg

KEAN Klimaschutz- und Energieagentur Niedersachsen

KRL Kommunalrichtlinie

KuTeK Kunden-Technologie-Kombinationen (BET-Tool)

kW Kilowatt (Leistung)

kWh Kilowattstunden (Energie)

KWK Kraft-Wärme-Kopplung

kWP Kommunale Wärmeplanung

kWp PV-Leistung, Kilowatt-Peak-Leistung (Spitzenleistung)

LBEG Landesamtes für Bergbau, Energie und Geologie

LGLN Landesamt für Geoinformation und Landvermessung Nieder-

sachsen

LPG Liquified Petroleum Gas

MFH Mehrfamilienhaus

MW Megawatt (Leistung)

MWh Megawattstunden (Energie)

MWp PV-Leistung, Megawatt-Peak-Leistung (Spitzenleistung)

NaWaRo nachwachsender Rohstoff

NGD Niedersächsischer Geothermiedienst

NKlimaG Niedersächsisches Gesetz zur Förderung des Klimaschutzes

und zur Minderung der Folgen des Klimawandels

NKI Nationale Klimaschutzinitiative

NLBL Niedersächsisches Landesamt für Bau- und Liegenschaften

ÖPNV Öffentlicher Personennahverkehr

PV Photovoltaik

PVT Solarkollektoren, die eine gemeinsame PV- und thermische

Nutzung ermöglichen

RH Reihenhäuser

ROP (regionales) Raumordnungsprogramm

TABULA Datenanalyse-Tool für Gebäudetypologien

TEN Teutoburger Energie Netzwerk eG

THG Treibhausgasemissionen

TJ Terrajoule

WINNIEPOT Windenergiepotenzial Niedersachsen

WLD Wärmeliniendichte

WPG Wärmeplanungsgesetz

Glossar

Baublock

Ein Gebäude oder mehrere Gebäude oder Liegenschaften, das oder die von mehreren oder sämtlichen Seiten von Straßen, Schienen oder sonstigen natürlichen oder baulichen Grenzen umschlossen und für die Zwecke der Wärmeplanung als zusammengehörig zu betrachten ist oder sind. (1)

Blockheizkraftwerke / BHKW Blockheizkraftwerke, kurz BHKW, nutzen das Prinzip der Kraft-Wärme-Kopplung (KWK), um Quartiere oder einzelne Gebäude sowohl mit Wärme ("Heizen"), als auch mit Strom ("Kraft") zu versorgen. Die bei der Verbrennung verschiedener Brennstoffe entstehende Abwärme wird nicht ungenutzt abgegeben, sondern z. B. in Gebäuden zu Heizzwecken genutzt. Beim Einsatz werden damit Wärme und Strom bereitgestellt. BHKW variieren nach Leistungsgrößen, genutzten Brennstoffen und Technologien für die Verbrennungsprozesse sowie Anwendungsfeldern (etwa Bereitstellung von Prozesswärme oder Raumwärme).

COP

Die Leistungszahl COP (vom englischen coefficient of performance) benennt wie die JAZ das Verhältnis von eingesetzter Energie und gewonnener Wärme. Die Leistungszahl stellt aber eine Momentaufnahme dar, während die Jahresarbeitszahl, die sich ändernden Bedingungen im Jahresverlauf berücksichtigt. (6)

Dekarbonisierung

Dekarbonisierung bezeichnet den Prozess, bei dem der Ausstoß von Kohlendioxid (CO₂) und anderen Treibhausgasen reduziert wird, um die Auswirkungen des Klimawandels zu bekämpfen. Dies geschieht in der Regel durch den Übergang von fossilen Brennstoffen zu erneuerbaren Energiequellen, die weniger oder gar keine CO₂-Emissionen verursachen, wie Solar- und Windenergie oder Umweltwärme. Dekarbonisierung umfasst auch Maßnahmen zur Verbesserung der Energieeffizienz und die Entwicklung neuer Technologien, die helfen, CO₂ aus der Atmosphäre zu entfernen oder zu speichern. Ziel ist es, eine nachhaltige und klimafreundliche Energie- und Wärmeversorgung zu schaffen.

Dezentrale (Wärme-)Versorgung Ein Gebiet, das (überwiegend) nicht über ein Wärme- oder ein Gasnetz versorgt wird (1), sondern etwa über individuelle, dezentrale Technologien, z. B. Wärmepumpen.

Emissionsfaktor

Emissionsfaktoren dienen dazu, (End-) Energieverbräuche in eine Treibhausgas (THG)-bilanz umzurechnen. Für Kommunen in Deutschland erfolgt dies (für retrospektive Bilanzen) nach dem BISKO-Standard. Denn je nach Wahl der THG-Emissionsfaktoren können THG-Bilanzen um bis zu 20 % variieren. Für ein standardisiertes Vorgehen nach BISKO werden alle Sektoren, die energiebezogenen Vorketten der einzelnen Energieträger (Strom, flüssige und gasförmige Energieträger) sowie neben den reinen CO2-Emissionen weitere Treibhausgase (unter anderem N₂O und CH₄) in CO₂-Äquivalenten berücksichtigt und mit den Energieverbräuchen multipliziert. (2) Im Wärmeplan werden THG-Emissionen in der Zukunft berechnet. Dies erfolgt unter Zuhilfenahme von zukünftigen Emissionsfaktoren aus dem Leitfaden für die kommunale Wärmeplanung der Landesenergieagentur in Baden-Württemberg, die ebenfalls Vorketten und Äquivalenzen umfassen.

Endenergie

Endenergie bezieht sich auf die Energie, die in einem bestimmten Zustand vorliegt und direkt von den Endverbrauchern genutzt werden kann. Sie ist die Energie, die nach der Umwandlung und Übertragung von Primärenergie (wie fossilen Brennstoffen oder erneuerbaren Energien) und damit einhergehenden Umwandlungs- und Transportverlusten zur Verfügung steht. Beispiele für Endenergie sind elektrische Energie oder Wärmeenergie, die in Haushalten, Industrie oder Verkehr verwendet werden. Endenergie ist also die Form der Energie, die tatsächlich für verschiedene Anwendungen genutzt wird, nachdem sie durch verschiedene Prozesse umgewandelt wurde.

Energieträger

Als Energieträger werden alle Quellen beziehungsweise Stoffe bezeichnet, in denen Energie mechanisch, thermisch, chemisch oder physikalisch gespeichert ist. Aus Energieträgern kann direkt oder durch Umwandlung Energie gewonnen werden. Unterschieden werden Primär- und Sekundärenergieträger. Bei Primärenergieträgern handelt es sich um Energieträger, die keiner Umwandlung unterworfen werden, zum Beispiel Kohle, Erdgas, sowie erneuerbare Energien. Sekundärenergieträger sind Energieträger, die aus Umwandlung von Primärenergieträgern entstehen, wie Mineralölprodukte, Gichtgas, Strom oder Fernwärme. (4)

Erdwärmesonde

Erdwärmesonden werden (neben Erdwärmekollektoren) in der oberflächennahen Geothermie (bis ca. 400 m) eingesetzt. Sie ist ein Erdwärmeüberträger, in dem eine Wärmeträgerflüssigkeit zirkuliert. In der Regel wird das Rohrsystem in ein vertikal oder schräg verlaufendes Bohrloch eingebracht. Das Potenzial ist von der Wärmeleitfähigkeit des Untergrunds sowie der zulässigen Bohrtiefe abhängig. (3)

Erneuerbare Energien

Umfassen laut WPG (1) Wärme aus Geothermie, Umweltwärme, Abwasser, Solarthermie, Biomasse, grünem Methan, Wärmepumpen, Strom (Bundesstrommix, Direktnutzung aus EE-Anlagen), grüner Wasserstoff. Zudem betrachtet die Wärmeplanung unvermeidbare Abwärme als Quelle.

Flüssiggas

Flüssiggas (auch LPG = Liquified Petroleum Gas) ist ein fossiler Energieträger, der leitungs- bzw. netzunabhängig in Tanks gelagert und für verschiedenen Anwendungen (Heizen, Kältemittel, Industrie) genutzt werden kann. Dazu zählen vor allem Propan und Butan. Daneben gibt es auch aus Biomasse hergestelltes biogenes Flüssiggas.

Fokusgebiet

Entsprechend den Vorgaben der Kommunalrichtlinie sind in geförderten Wärmeplänen zwei bis drei Fokusgebiete auszuweisen, die bezüglich einer klimafreundlichen Wärmeversorgung kurz- und mittelfristig prioritär zu behandeln sind.

Gradtagzahl

Die Gradtagzahl ist eine heiztechnische Kenngröße. Sie stellt den Zusammenhang zwischen der Außenlufttemperatur und der gewünschten Raumtemperatur dar. Die Gradtagzahl ist die Differenz zwischen der Raumtemperatur und der Tagesmitteltemperatur. Sie kann für verschiedene Zeiträume (Monate, Heizperiode, ...) aufsummiert werden. Mit der Gradtagzahl können Energieverbrauch und Heizkostenabrechnung überprüft werden. (5) Im Wärmeplan wird, da die Verbrauchsdaten stark von der Witterung abhängen, eine Witterungsbereinigung über Gradtagzahlen durchgeführt. Dadurch werden jahresscharfe Verbräuche vergleichbar gemacht.

Hausumring

Begrenzung eines Gebäudes oder eines Gebäudeteils mit gleicher Nutzung

Jahresarbeitszahl (JAZ)

Je effizienter eine Wärmepumpe arbeitet, desto höher ist ihre sogenannte Jahresarbeitszahl (JAZ). Sie beschreibt, wie viele Einheiten Wärme eine Heizung im gesamten Jahresschnitt mit einer eingesetzten Einheit Energie gewinnt. Je höher die JAZ ist, desto besser. Die JAZ 4 bedeutet zum Beispiel, dass

eine Wärmepumpe pro Kilowattstunde Strom im Schnitt 4 Kilowattstunden Wärme ans Gebäude abgibt. (6)

Kommunalrichtlinie

Die Kommunalrichtlinie ist ein Förderprogramm der Bundesregierung basierend auf der nationalen Klimaschutzinitiative (NKI), das darauf abzielt, Kommunen bei der Umsetzung von Klimaschutz- und Energieeffizienzmaßnahmen zu unterstützen. Sie bietet finanzielle Mittel und Beratung für Projekte, die zur Reduzierung von Treibhausgasemissionen und zur Verbesserung der Energieeffizienz in kommunalen Einrichtungen beitragen. Ziel ist es, die kommunale Infrastruktur nachhaltiger zu gestalten und die Lebensqualität in den Kommunen zu erhöhen. Die kommunale Wärmeplanung wird aus Mitteln der Kommunalrichtlinie gefördert.

Leistungszahl (einer Wärmepumpe, COP bzw. JAZ) Die Leistungszahl einer Wärmepumpe (Coefficient of Performance oder COP) ist ein Maß für die gegenwärtige Effizienz einer Wärmepumpe, während die Jahresarbeitszahl (JAZ) ein Maß für die Effizienz der Wärmepumpe innerhalb eines ganzen Jahres ist. (s. auch COP und JAZ)

Nachtspeicherheizung

Die Nachtspeicherheizung (auch Nachtspeicherofen genannt) ist ein Heizgerät, das mit elektrischem Strom betrieben wird. Dieser wird in der Nacht aufgenommen und direkt in thermische Energie umgewandelt. Anschließend speichern Nachtspeicheröfen die Wärme, bis sie diese am folgenden Tag an die Räume abgeben. (7)

Potenzial

Die Betrachtung der Potenziale im Wärmeplan dient erstens einer hinreichend genauen Abschätzung der im beplanten Gebiet vorhandenen Potenziale zur Energieeinsparung durch Wärmebedarfsreduktion, sowie zweitens, der Potenziale für Wärmeerzeugung aus erneuerbaren Energien und unvermeidbarer Abwärme. Unterschieden werden verschiedene Potenzialbegriffe: Das theoretische Potenzial beschreibt jenen Anteil des physikalisch nutzbaren Energieangebots, der durch bekannte Technologien und Bereitstellungsverfahren grundsätzlich erschlossen werden kann. Die Potenziale werden durch technische Restriktionen, die im Rahmen der Potenzialanalyse ermittelt werden, eingeschränkt. Eine weitere Reduzierung erfolgt durch wirtschaftliche oder politische Rahmenbedingungen, die in der energiewirtschaftlichen Bewertung vorgenommen werden. Als kleinste Teilmenge berücksichtigen die erschließbaren Potenziale auch nicht ökonomische Barrieren wie beispielsweise Informationsdefizite der möglichen Wärmeabnehmer, rechtliche Hürden sowie Akzeptanzprobleme bei der Erschließung verschiedener Wärmequellen. (3)

Prozesswärme

Neben dem Wärmebedarf für die Nutzungsarten Raumwärme und für Warmwasser wird im Wärmeplan der für Prozesswärme betrachtet, die die Sektoren Industrie sowie Gewerbe, Handel und Dienstleistungen benötigen. Prozesswärme ist für die Herstellung oder Umwandlung von Produkten bzw. die Bereitstellung von Dienstleistungen (etwa Krankenhäuser, Bäder) erforderlich. Dabei sind sehr unterschiedliche, in der Regel aber hohe Anforderungen an das Temperaturniveau von Prozesswärme (bis zu >1000 °C) im Vergleich zu den anderen Nutzungsarten zu berücksichtigen. (3)

PVT

PVT-Kollektoren sind spezielle Solarkollektoren, die sowohl Photovoltaik- als auch thermische Komponenten in einem Gerät vereinen. Das bedeutet, sie wandeln Sonnenlicht nicht nur in Strom um (wie herkömmliche Photovoltaik-Module), sondern nutzen auch die Wärme der Sonne, um Wasser oder andere Flüssigkeiten zu erhitzen. Dadurch können sie effizienter sein, weil sie sowohl Strom als auch Wärme bereitstellen.

Sanierung, Sanierungsquote, Sanierungstiefe Sanierung meint hier die energetische Sanierung von Gebäuden durch Dämmmaßnahmen verschiedener Gebäudeteile und den Austausch von Fenstern / Türen mit dem Ziel, die Wärmeleitfähigkeit der Gebäudeteile (U-Werte) und damit den Wärmebedarf zu reduzieren. Unterschieden wird dabei die Sanierungsquote und -tiefe. Die Begriffe Sanierungsquote und Sanierungsrate werden in dem Bericht synonym verwendet. Die Sanierungsquote beschreibt die Anzahl der Sanierungen, z. B. in jährlichen Prozentraten. Die Sanierungstiefe gibt an, wie umfassend eine Sanierung durchgeführt wird, d. h. welcher energetische Standard durch die Sanierung erreicht werden konnte.

Sektoren

Unterschieden werden in der Wärmeplanung die Sektoren: private Haushalte bzw. Wohngebäude, Gewerbe, Handel und Dienstleistungen (GHD) und Industrie, teils werden für die THG-Bilanz kommunale Liegenschaften als vierter Sektor separat ausgewiesen. Nicht berücksichtigt wird hier – auch im Unterschied zu kommunalen Endenergie- und THG-Bilanzen - der Sektor Verkehr.

Wichtig: Wenn von Sektorenkopplung gesprochen wird, meint dies hingegen die Verschränkung der Energienutzung

zwischen Strom, Wärme und Mobilität (etwa die Erzeugung von Wasserstoff durch Elektrolyse für den ÖPNV mit nutzbarer Abwärme als Nebenprodukt für umliegende Gebäude).

Sole-Wärmepumpe Heizungstechnologie, bei der eine Wärmepumpe mit einem Wasser-Glykol-Gemisch eingesetzt wird. Dies ist i. d. R. der Fall, wenn Wärmepumpen mit oberflächennaher Geothermienutzung, z. B. Erdsonden oder Erdkollektoren, kombiniert werden.

Synthetische Gase

Hierzu zählt v. a. synthetisches Methan. Es wird aus CO₂-neutralem Wasserstoff mit CO₂ über den Verfahrensschritt der Methanisierung hergestellt. Damit das synthetische Methan CO₂-neutral ist, muss dieses CO₂ entweder biogenen Ursprungs, d. h. aus Biomasse, sein oder aus der Atmosphäre (z. B. über Direct Air Capture zur Abscheidung von CO₂ aus der Umgebungsluft) stammen.

treibhausgasneutral Ziel der Wärmeplanung (s. WPG) ist eine treibhausgasneutrale Wärmeversorgung bis spätestens 2045 darzustellen - hier nach den Vorgaben des NKlimaG bereits 2040. Treibhausgasneutralität wird dann erreicht, wenn nicht mehr Treibhausgase emittiert werden, als auf natürliche oder künstliche Art und Weise gebunden werden können. Das heißt, wenn ein Zustand von Netto-Null der Treibhausgasemissionen erreicht wird. Davon abzugrenzen ist klimaneutral, als Zustand, bei dem menschliche Aktivitäten im Ergebnis keine Nettoeffekte auf das Klimasystem haben. Dies beinhaltet auch durch den Menschen verursachte Aktivitäten, die regionale oder lokale biogeophysische Effekte haben (z. B. Änderung der Oberflächenalbedo). Allerdings ist Klimaneutralität nicht eindeutig bzw. einheitlich definiert. Treibhausgasneutralität ist ein Teil der Klimaneutralität (8).

unvermeidbare Abwärme Der Begriff der unvermeidbaren Abwärme wird in § 3 WPG definiert. Danach ist unvermeidbare Abwärme Wärme, die als unvermeidbares Nebenprodukt in einer Industrieanlage, Stromerzeugungsanlage, Elektrolyseuren oder im tertiären Sektor anfällt und ohne den Zugang zu einem Wärmenetz ungenutzt in die Luft oder das Wasser abgeleitet werden würde. Abwärme gilt als unvermeidbar, soweit sie aus wirtschaftlichen, sicherheitstechnischen oder sonstigen Gründen im Produktionsprozess nicht nutzbar ist und mit vertretbarem Aufwand nicht verringert werden kann. Darüber hinaus wird gemäß § 3 WPG Wärme aus thermischer Abfallbehandlung im

Anwendungsbereich des WPG unvermeidbarer Abwärme gleichgestellt, wenn sie unter Einhaltung der Vorgaben des Gesetzes zur Förderung der Kreislaufwirtschaft und Sicherung der umweltverträglichen Bewirtschaftung von Abfällen (Kreislaufwirtschaftsgesetz) in der jeweils geltenden Fassung aus der energetischen Verwertung von Abfall gewonnen wird. Darunter fällt auch Wärme aus der thermischen Behandlung von Klärschlamm gemäß der Klärschlammverordnung in der jeweils geltenden Fassung. (3)

Wärmeatlas

Der Wärmeatlas ist ein digitales Instrument, das georeferenziert die Ergebnisse der Bestands- und Potenzialanalyse abbildet. Das heißt, er umfasst Daten zum lokal verorteten Wärmebedarf bzw. -verbrauch, zur Infrastruktur der Wärmeversorgung, baulichen Strukturen (Baualtersklassen, Gebäudetypen), bildet ermittelte Kennzahlen wie Wärme(-linien-)dichten ab und enthält Informationen zu lokal verortbaren Potenzialen. Aufgrund des Datenschutzes werden die meisten Informationen nach außen nur aggregiert (etwa auf Ebene eines Baublocks) dargestellt.

Wärmebedarf

Unter dem Raumwärmebedarf versteht man die rechnerisch ermittelte Wärmemenge, die sich aus der vorgesehenen Innenraumtemperatur, den äußeren klimatischen Bedingungen sowie den Wärmegewinnen und -verlusten des Gebäudes ergibt. Zusätzlich umfasst der Wärmebedarf jenen, der für die Warmwasserbereitung und für die Herstellung oder Umwandlung von Produkten erforderlich ist (Prozesswärme). Auf Basis von Gebäudetypologie bzw. Abnehmerstruktur lässt sich der Wärmebedarf anhand spezifischer Kennwerte abschätzen und bildet somit eine gute Grundlage für eine erste Einordnung bzw. das Schließen von Datenlücken. (3)

Wärmedichte

Dabei wird der Wärmeverbrauch ins Verhältnis zu einer Grundfläche gesetzt. Als geeignete Bezugsgrößen eignen sich oft Flurstücke, Hektarraster oder Baublöcke. Der Indikator wird meist in MWh/(ha a) oder TJ/(km² a) angegeben. (3)

Wärmeliniendichte (WLD)

Die Kenngröße setzt die in der Bestandsanalyse ermittelte Wärmeverbrauchs- und -bedarfsmenge, die entlang eines Straßenabschnitts anfällt, ins Verhältnis zur Länge des Straßenabschnitts bzw. der für die Wärmeversorgung relevanten Trassenlänge. Der Indikator wird meist in MWh/(m a) angegeben. (3)

Wärmenetz

Ein Wärmenetz ist ein System, das Wärme von einem zentralen Erzeuger über Leitungen zu mehreren Verbrauchern transportiert. Es wird häufig in städtischen Gebieten eingesetzt, um Wohn- und Nichtwohngebäude sowie Gewerbe- und Industriebetriebe, mit Heizwärme zu versorgen. Die Wärme wird in der Regel in Form von heißem Wasser erzeugt, oft durch Blockheizkraftwerke (BHKW) oder Heizkessel, die mit Gasen oder Biomasse betrieben werden. Des Weiteren werden auch Erzeugungsanlagen eingesetzt, die erneuerbare Wärme direkt nutzen (z. B. Geothermie oder Solarthermie) oder die Umweltwärme mittels Wärmepumpen nutzen. Wärmenetze zählen zur leitungsgebundenen Wärmeversorgung.

Wärmeplan

Das zur Veröffentlichung bestimmte Ergebnis der Wärmeplanung. (1)

Wärmeplanung

Die kommunale Wärmeplanung ist eine rechtlich unverbindliche, strategische Fachplanung, die Möglichkeiten für den Ausbau und die Weiterentwicklung leitungsgebundener Energieinfrastrukturen für die Wärmeversorgung, die Nutzung von Wärme aus erneuerbaren Energien, aus unvermeidbarer Abwärme oder einer Kombination hieraus sowie zur Einsparung von Wärme aufzeigt und die mittel- und langfristige Gestaltung der Wärmeversorgung für das beplante Gebiet beschreibt. (1)

Wärmeplanungsgesetz (WPG) Das Wärmeplanungsgesetz (WPG), geltend ab 1.1.2024, ist ein rechtlicher Rahmen auf Bundesebene, der noch in die Ländergesetzgebung überführt werden muss. Das WPG regelt insbesondere die Erstellung kommunaler Wärmepläne, aber auch die Transformation und Dekarbonisierung vorhandener Wärmnetze. Dieses Bundesgesetz muss in die Ländergesetzgebung überführt werden. Die Länder übertragen die Verpflichtung zur Erstellung kommunaler Wärmeplanungen i. d. R. auf die Kommunen. Das WPG zielt darauf ab, die Energieeffizienz zu steigern und den Einsatz erneuerbarer Energien sowie der Nutzung unvermeidbarer Abwärme der Wärmeversorgung umzusetzen. Das Gesetz legt fest, dass die Länder dafür Sorge tragen müssen, eine umfassende Wärmeplanung auf ihrem Gebiet durchzuführen, um die Wärmeversorgung nachhaltig zu gestalten. Dazu gehört die Analyse des bestehenden Wärmebedarfs, die Identifizierung von Potenzialen für erneuerbare Energien und die Entwicklung von Strategien zur Reduzierung von CO2-Emissionen.

Durch das Wärmeplanungsgesetz sollen die Weichen für eine klimafreundliche und zukunftssichere Wärmeversorgung gestellt werden, die sowohl ökologischen als auch ökonomischen Anforderungen gerecht wird.

Wärmepumpe

Eine Wärmepumpe erschließt Wärme aus der Außenluft (auch Luft-Wasser-Wärmepumpe genannt), dem Grundwasser (auch Wasser-Wasser-Wärmepumpe) oder der Erdwärme (auch Sole-Wärmepumpe oder Sole-Wasser-Wärmepumpe) für die Nutzung in Gebäuden. Dazu ist ein Kältemittel in einem Rohrsystem das Transportmittel. Dieses wird im Kreislauf verdichtet, bei Abgabe der Wärme wird das Mittel wieder entspannt. Für diese Verdichtung braucht eine elektrische Wärmepumpe Strom. Manche Wärmepumpen können im Sommer auch zum Kühlen eingesetzt werden. (6)

Wärmeverbrauch

Beim Wärmeverbrauch handelt es um die tatsächlich verbrauchte (gemessene) Energiemenge. Bei der Darstellung des Verbrauchs werden daher im Gegensatz zum Bedarf auch die Auswirkungen von Witterung, Nutzerverhalten und Produktionsänderungen abgebildet. Die Verwendung realer Wärmeverbrauchswerte bietet grundsätzlich den Vorteil einer realistischen Momentaufnahme für den entsprechenden Erfassungszeitraum, die Werte sind jedoch auch von verschiedenen Einflussgrößen abhängig, wie dem Einsatz der Wärmeversorgungsanlage, dem individuellen Nutzerverhalten, den Produktionsabläufen sowie den jährlichen Witterungsschwankungen. (3)

(voraussichtliches) Wärmeversorgungsgebiet Entsprechend dem WPG umfasst ein voraussichtliches Wärmeversorgungsgebiet ein Wärmenetzgebiet, ein Wasserstoffnetzgebiet oder ein Gebiet für die dezentrale Wärmeversorgung oder ein Prüfgebiet. Auf Grundlage der Bestands- und Potenzialanalyse erfolgt eine Einteilung in Teilgebiete mit dem Ziel einer möglichst kosteneffizienten Versorgung des jeweiligen Teilgebiets auf Basis von Wirtschaftlichkeitsvergleichen. Besonders geeignet sind Wärmeversorgungsarten, die im Vergleich zu den anderen in Betracht kommenden Wärmeversorgungsarten geringe Wärmegestehungskosten, geringe Realisierungsrisiken, ein hohes Maß an Versorgungssicherheit und geringe kumulierte Treibhausgasemissionen bis zum Zieljahr aufweisen. (1)

Quellen:

- Bundesgesetzblatt Jahrgang 2023 Teil I Nr. 394, Gesetz für die Wärmeplanung und zur Dekarbonisierung der Wärmenetze (Wärmeplanungsgesetz -WPG)
- (2) Agentur für kommunalen Klimaschutz am Deutschen Institut für Urbanistik gGmbH (Difu) (2024) BISKO Bilanzierungs-Systematik Kommunal. Methoden und Daten für die kommunale Treibhausgasbilanzierung für den Energie- und Verkehrssektor in Deutschland
- (3) Bundesministeriums für Wirtschaft und Klimaschutz (BMWK) und Bundesministeriums für Wohnen, Stadtentwicklung und Bauwesen (BMWSB) (2024) Leitfaden Wärmeplanung Empfehlungen zur methodischen Vorgehensweise für Kommunen und andere Planungsverantwortliche.
- (4) Destatis (o. J.) Glossar (https://www.destatis.de/)
- (5) Deutscher Wetterdienst (o. J.) Wetter- und Klimalexikon (https://www.dwd.de/DE/service/lexikon/Functions/glossar.html?lv2=102936&lv3=103132)
- (6) Verbraucherzentrale (2024) https://www.verbraucherzentrale.de/wissen/energie/heizen-und-warmwasser/waermepumpe-alles-was-sie-wissen-muessen-im-ueberblick-5439
- (7) https://www.heizung.de/
- (8) Umweltbundesamt (2021) Treibhausgasneutralität in Kommunen. (https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/2021-03-24 factsheet treibhausgasneutralitaet in kommunen.pdf)

Dieser Bericht wurde durch die Gemeinde Glandorf mit Unterstützung der TEN und BET erstellt.

Förderung

Das Vorhaben "Erstellung einer kommunalen Wärmeplanung für die Gemeinde Glandorf" (Laufzeit des Vorhabens bis 31.5.2025, mit einer Verlängerung bis zum 31.10.2025) wird durch die Nationale Klimaschutzinitiative des Bundesministeriums für Wirtschaft und Kli-

maschutz (BMWK), seit Mai 2025 BMWE, in Form einer nicht rückzahlbaren Zuwendung von 90 % der zuwendungsfähigen Ausgaben gefördert.

Zusammenfassung

Mit dem vorliegenden Endbericht werden die Arbeitsschritte und Ergebnisse des ersten kommunalen Wärmeplans für Glandorf dokumentiert.

Mit einer umfangreichen **Bestandsanalyse** wurde ein gebäudescharfer Wärmeatlas erstellt. Die externe Darstellung der Ergebnisse erfolgt aus Datenschutzgründen auf Baublockebene. Da knapp 60 % der Gebäude älter als 35 Jahre sind, besteht ein <u>hoher Sanierungsbedarf</u>.

Die Wärmeversorgung der Gebäude erfolgt bislang überwiegend mit <u>fossilen Energieträgern</u>, Gas und Heizöl stellen einen Anteil von knapp <u>81 %</u> des Endenergieverbrauchs dar. Das Alter der Heizungsanlagen beträgt bei ca. 44 % der Anlagen mehr als 20 Jahre, 18 % der Anlagen sind älter als 30 Jahre.

Insgesamt benötigen die 1.740 Gebäude für die Wärmeversorgung jährlich <u>84 GWh</u> <u>Endenergie</u>, damit ist ein Treibhausgasausstoß von 19.000 Tonnen CO₂-Äquivalente pro Jahr verbunden.

Mit Hilfe der spezifischen Wärmeverbrauchsdichten und den daraus abgeleiteten Wärmeliniendichten wurde die Grundlage geschaffen, mögliche Gebiete zu identifizieren, die für eine leitungsgebunden Wärmeversorgung geeignet sind.

In der **Potenzialanalyse** wurden zunächst die theoretischen <u>Reduktionspotenziale</u> des Wärmebedarfs von knapp <u>27 %</u> insgesamt und räumlich differenziert ermittelt. Das realistische Reduktionspotenzial, das unter Berücksichtigung der Förderkulisse und der Bereitschaft der Hauseigentümer zur Investition in Sanierungsmaßnahmen angesetzt wurde, ist jedoch viel geringer und wird im Rahmen der Ermittlung der Zielszenarien ermittelt. In einem weiteren Schritt wurden die, für die Deckung des verbleibenden Wärmebedarfs in Glandorf, zur Verfügung stehenden theoretischen Potenziale zur Nutzung erneuerbarer Wärmequellen und unvermeidbarer Abwärme untersucht. Dazu wurde das theoretische bzw. technische Potenzial für die jeweiligen Quellen analysiert. Es zeigte sich, dass <u>ausreichend grüne Wärmequellen</u> zur Verfügung stehen, um Glandorf im Jahr <u>2040 treibhausgasneutral</u> mit Wärme versorgen zu können. Abwärmepotenziale aus der Industrie wurden ermittelt, stehen aber aufgrund der Entfernung zu Wärmeverbrauchern real nicht zur Verfügung. Einschränkungen können z. B. durch etwaiger Genehmigungsrestriktionen bestehen.

Bei der Erstellung des **Zielszenarios** wurden auf der Basis eines energiewirtschaftlichen Fundamentalmodells die **energiewirtschaftlichen Rahmenbedingen bis 2045** (Vorgabe der Förderrichtlinie) simuliert und auf Glandorf bezogen (Top-down-Ansatz) so parametriert, dass eine **Treibhausneutralität gemäß Klimaschutzgesetz** Niedersachsen (NKlimaG) **bereits 2040** erreicht wird. In einem weiteren Schritt wurde eine Vollkostenrechnung bis ins Jahr 2045 für die voraussichtlich zur Verfügung stehenden Beheizungssysteme mittels eines BET-internen Tools durchgeführt (Bottom-up-Rechnung). Dabei

wurden die örtlichen Gegebenheiten, die sich für die Beheizung aufgrund der lokalen Gebäudestrukturen ergeben, in einer Matrix ermittelt und die Ergebnisse dokumentiert.

Auf diesen Rechnungen basierend wurde die baublockseitenscharfe Einteilung des Gemeindegebiets in Gebiete mit vorrangig dezentraler oder vorrangig zentraler Versorgung (über Wärmenetze) vorgenommen. Für die dezentrale Versorgungsvariante zeigt sich, dass gasbasierte Technologien erheblich teurer werden und nur noch bis zum Anfang der 2030er Jahre eine wirtschaftliche Option sind. Danach sind in den dezentralen Bereichen Wärmepumpen, in der Regel mit Luft als Wärmequelle, wirtschaftlicher und machen 2040 etwa zwei Fünftel der Wärmeversorgung aus. Im Bereich der Wärmenetzgebiete zeichnet sich für die Entwicklung von zunächst einem Netz eine wirtschaftlich sinnvolle Lösung ab. Damit würden Wärmenetze im Jahr 2040 einen Anteil von 9 % an der Wärmeversorgung abbilden. Diese Lösungen sollten im Rahmen der Maßnahmenumsetzung über Machbarkeitsstudien weiter detailliert werden.

Der Einsatz grüner Gase (hier: grüner Wasserstoff, Biomethan und synthetisches grünes Methan) wurde ebenfalls untersucht. In Abstimmung mit dem örtlichen Versorger und laut den aktuellen Szenarien der Fernleitungsnetzbetreiber (Gas) wird es kurz- bis mit-Wasserstoff im Versorgungsgebiet Glandorf telfristia keinen von Biomethan steht aktuell in geringen Mengen (bilanziell) zur Verfügung und wird in den Betrachtungen ab 2030 sukzessive durch grünes Methan (bilanziell), welches aktuell noch nicht verfügbar ist, ersetzt. Die Anwendungen für grüne Gase sind im Zieljahr ausschließlich im industriellen Bereich zur Erzeugung von Prozesswärme zu sehen. Mit den angesetzten industriellen Verbräuchen hätten grüne Gase aus jetziger Sicht im Jahr 2040 einen Anteil von 31 %. Da die Kosten für diese Gase, insbesondere auch die Gasnetzentgelte, erheblich ansteigen und die Anzahl der Gaskunden (und damit der Gasverbräuche) entsprechend zurückgehen werden, wird der Einsatz von Erdgas langfristig für die dezentrale Versorgung stark abnehmen. Eine flächendeckende Versorgung des bestehenden Gasnetzes mit Biomethan, z. B. durch die bestehenden Biogasanlagen ist mittelfristig unter den aktuell gegebenen Randbedingungen keine wirtschaftliche Alternative. Lediglich für die Versorgung der wenigen Prozesswärme-Kunden und Wärmeerzeugungsanlagen für Wärmenetze wird noch eine Gasversorgung angesetzt.

Die verbleibenden relativ geringen Anteile des Endenergieverbrauchs werden über Biomasse, meist in Form von Holzpellets, sowie mit Hybridlösungen, z. B. Wärmepumpenmit grünem Flüssiggas, gedeckt.

Die Annahmen der Potenzialanalyse und der Szenarien inklusive Wärmebedarfe gilt es, mit der Fortschreibung des Wärmeplans kontinuierlich, mindestens im Rahmen des vorgesehenen 5-jährigen Zyklus, zu überprüfen.

Die aus dem Zielszenario abgeleiteten Maßnahmen konzentrieren sich

- auf kommunikative und organisatorische Maßnahmen, die die Akzeptanz der Wärmewende unterstützen und insbesondere im Beratungsbereich zu Sanierungen ansetzen, sowie
- auf technische Maßnahmen im Bereich der weiteren Entwicklung von Wärmenetzgebieten.

Im Rahmen der Beteiligungsprozesse sowie der Erstellung einer Kommunikationsstrategie wurde eine umfassende Akteursbeteiligung konzipiert und durchgeführt. Damit wurden die wesentlichen Stakeholder einerseits sowie andererseits die Öffentlichkeit erreicht und für das Thema kommunale Wärmeplanung sensibilisiert. Die Aufstellung der Verstetigungsstrategie und des Controllingkonzeptes bietet die Grundlage für die weitere Umsetzung der Wärmestrategie. Neben der Implementierung eines regelmäßig tagenden Gremiums, bestehend aus den maßgeblichen Stakeholdern, sollte auch die proaktive Kommunikation fortgeführt werden. Besonderes Augenmerk sollte dabei auf die Weiterentwicklung des vorrangigen Wärmenetzgebietes gelegt werden.

Folgende Kernaussagen lassen sich aus den Untersuchungen ableiten:

- ➤ 1.740 Gebäude benötigen für die Wärmeversorgung jährlich 84 GWh Endenergie, damit ist ein Treibhausgasausstoß von 19.000 Tonnen CO₂-Äquivalente pro Jahr verbunden.
- ➤ Der Wärmebedarf lässt sich mit realistischen Annahmen bis zum Jahr 2045 um 17 % reduzieren.
- ➤ Die ermittelten Potenziale reichen aus, um Glandorf 2040 treibhausgasneutral mit Wärme zu versorgen.
- ➤ Ein Wärmenetz könnte im Ortskern von Glandorf bis zum Jahr 2040 errichtet werden und ist voraussichtlich wirtschaftlich.
- ➤ Die anderen Ortslagen, insbesondere Schwege, verfügen zwar über eine gewisse Bebauungsdichte, die jedoch nicht für die Errichtung eines Wärmenetzes ausreicht. Eine ausreichende Wirtschaftlichkeit lässt sich bis 2045 nicht darstellen.
- ➤ Gas als Energieträger wird ab dem Zieljahr 2040 nur noch für den Prozesswärmebedarf der großen Industrieverbraucher eingesetzt. Es wird angenommen, dass dabei v. a. grünes Methan einsetzbar ist.
- In den weniger dicht besiedelten Bereichen Glandorf, in denen keine Versorgung mit Wärmenetzen wirtschaftlich ist, dominiert die dezentrale Wärmeversorgung. Sie basiert im Zieljahr 2040 in Glandorf größtenteils auf Wärmepumpen mit Luft, aber auch mit oberflächennaher Geothermie als Wärmequelle. Gas spielt in der zukünftigen dezentralen Versorgung keine Rolle mehr.

0 Einleitung

Deutschlands Endenergieeinsatz dient zu mehr als der Hälfte der Bereitstellung von Wärme. In Privathaushalten werden fast drei Viertel des Energieeinsatzes für die Wärmebereitstellung aufgewendet. Dies erfolgt aktuell noch überwiegend mit fossilen Energieträgern, insbesondere mit Erdgas und Heizöl.

Die Energiewende zu realisieren, bedeutet daher auch die Wärmewende in die Wege zu leiten. Da die Wärmeversorgung lokal und vergleichsweise "kleinteilig" erfolgt, sind hier die Kommunen in einer wichtigen Rolle, um den Weg zur Dekarbonisierung zu bereiten.

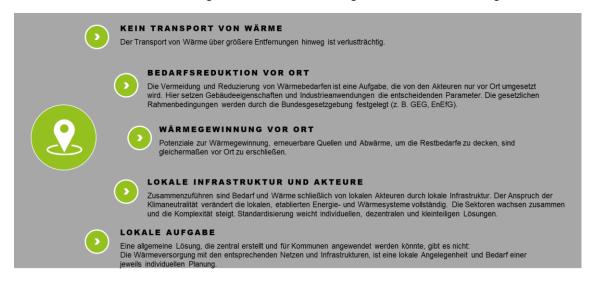


Abbildung 1: Die Wärmewende als lokale Aufgabe

Die Organisation der Wärmewende ist primär eine lokale Aufgabe, die zunächst der Kommune zufällt, die diese Aufgabe aber insbesondere nur gemeinsam mit den lokalen oder regionalen Energieversorgern und den relevanten Akteuren lösen kann.

0.1 Motivation, Rechtsrahmen und Aufgabenstellung

Rechtsrahmen

Mit der Novellierung der **Kommunalrichtlinie** (KRL) vom 18. Oktober 2022 hat der Gesetzgeber auf Bundesebene einen Förderrahmen geschaffen, der insbesondere die Erstellung kommunaler Wärmepläne (kWP) mit i. d. R. 90 % der Kosten bezuschusst, wenn ein Antrag bis zum 31.12.2023 gestellt wurde. Auf Bundesebene wurde am 22. Dezember 2023 das Gesetz für die Wärmeplanung und zur Dekarbonisierung der Wärmenetze (**Wärmeplanungsgesetz** – WPG) durch Veröffentlichung im Bundeanzeiger zum 01.01.2024 in Kraft gesetzt. Dieses WPG muss noch in die Ländergesetzgebung überführt werden. Für Niedersachen gilt aktuell das Landesgesetz zum Klimaschutz (NKlimaG), welches eine Umsetzung der kommunalen Wärmeplanung bis Ende 2026 sowie eine **treibhausgasneutrale Wärmeversorgung** bis zum Jahr **2040** für Mittel- und

Oberzentren vorschreibt. Für die Gemeinde Glandorf wird dieses Ziel angesetzt. Weitere gesetzliche Anpassungen werden mit der Umsetzung des **WPG auf Landesebene** erwartet. Der **Zielhorizont dieses Berichts** erstreckt sich bis zum Jahr **2045**, entsprechend der Vorgaben der Kommunalrichtlinie (KRL) und des Wärmeplanungsgesetzes auf Bundesebene (WPG).

Zentrale Maßgabe für die Aufstellung des kommunalen Wärmeplans ist die Durchführung der im **Technischen Annex** der KRL geforderten Arbeitsschritte. Darüber hinaus werden – soweit möglich – die Vorgaben des, während der Projektlaufzeit verabschiedeten und auf Landesebene noch nicht geltenden, Wärmeplanungsgesetzes berücksichtigt. Dies betrifft insbesondere die **Information der Öffentlichkeit**. Dazu diente auch ein Zwischenbericht, mit dem der Stand der Bestands- und Potenzialanalyse dokumentiert wurde und ein Entwurf des Zielszenarios dargestellt wurde. Mögliche Stellungnahmen und Kommentierungen wurden genutzt, um den ersten Wärmeplan der Gemeinde Glandorf zu finalisieren.

Wärmeplanung in der Gemeinde Glandorf

Die kommunale Wärmeplanung der **Gemeinde Glandorf** ist ein wichtiger Prozess zu einer treibhausgasneutralen, effizienten Wärmeversorgung. Entsprechend der bundesdeutschen Daten entfällt auch in Glandorf mehr als die Hälfte des deutschen Endenergieverbrauchs auf Wärmeanwendungen. Die Gemeinde hat gemäß des NKlimaG das Ziel bekräftigt, **bis spätestens 2040 treibhausgasneutral** zu sein. Bislang erfolgt der überwiegende Teil der Wärmeversorgung durch fossile Energieträger. Die Endenergiebilanz der Gemeinde Glandorf auf Basis der Werte 2021-2023 zeigt, dass der Wärmebedarf dabei zu 56 % aus Erdgas und zu 25 % aus Heizöl oder Flüssiggas gedeckt wurde.

Die Wärmeplanung gibt der Gemeinde die Möglichkeit, eine Strategie für die **Transformation der Wärmeversorgung** in Form des ersten kommunalen Wärmeplans im Jahr 2025 zu entwickeln. So soll aufgezeigt werden, wie eine treibhausgasneutrale und zukunftsfähige Wärmeversorgung aufgebaut und die Wärmewende aktiv gestaltet werden kann. Durch die frühe Erarbeitung eines Wärmeplans liegen – für alle transparent – wichtige Informationen vor, wie die Zukunft der Wärmeversorgung aussehen kann.

Im November 2024 haben die Arbeiten am kommunalen Wärmeplan unterstützt durch die TEN eG und der BET Consulting GmbH begonnen. Dazu wurde ein Projektfahrplan ausgearbeitet. In einem ersten Schritt wurden dafür gemeinsam von der TEN und der BET der aktuelle Wärmeverbrauch und die vorhandenen Wärmeinfrastrukturen im Gemeindegebiet detailliert analysiert. Für die Nutzung von erneuerbaren Energien und von Abwärmequellen sowie für die Reduzierung des Wärmebedarfs wurde eine Potenzialanalyse durchgeführt. Anschließend wurde ein Zielszenario erarbeitet, welches einen Pfad zur Treibhausgasneutralität aufzeigt. Daraus wurden Strategien und Maßnahmen zur Senkung des Wärmeverbrauchs und zur treibhausgasneutralen Wärmeversorgung für die einzelnen Gemeindegebiete abgeleitet, die zur Zielerreichung einer treibhausgasneutralen Wärmeversorgung im Jahr 2040 führen.

Der Wärmeplan gibt als strategisches Planungsinstrument noch keine verbindliche Aussage für einzelne Haushalte in Bezug auf eine kurzfristige Heizungsumstellung. Als strategische Leitplanung stellen die Ergebnisse der kommunalen Wärmeplanung auch keine Verbindlichkeit für Energieversorger oder Netzbetreiber dar.

Die Ergebnisse können aber als wichtige Grundlage genutzt werden für die strategische Entwicklung der Wärmeversorgung durch die Gemeinde Glandorf sowie durch den örtlichen Versorger im Rahmen der Entwicklung von neuen und Wärmenetzen.

0.2 Rahmenbedingungen des Projekts

Die Gemeinde Glandorf

Glandorf ist eine Gemeinde im Südosten des Landkreises Osnabrück und hat etwa 6.700 Einwohnerinnen und Einwohner bei einer Flächenausdehnung von ca. 60 km².

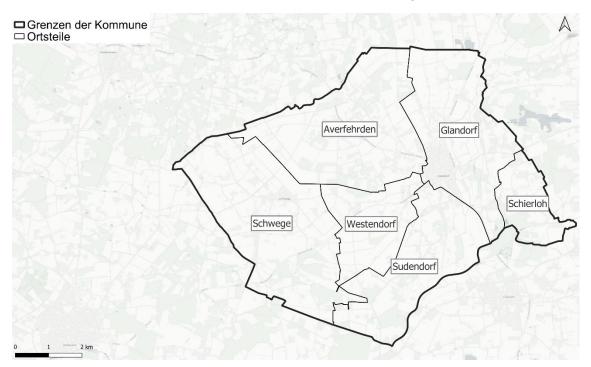


Abbildung 2: Gemeindegebiet Glandorf mit den einzelnen Ortsteilen¹

Die Gemeinde Glandorf besteht aus den Ortsteilen Schwege, Averfehrden, Westendorf, Sudendorf, Glandorf und Schierloh.

Die Gemeinde Glandorf ist landwirtschaftlich geprägt. Gewerbeansiedlungen befinden sich insbesondere um den Kern des Hauptorts Glandorf sowie im Norden der Gemeinde in Averfehrden.

¹ Map tiles by CartoDB, under CC BY 3.0. Data by OpenStreetMap, under ODbL

0.3 Projektstruktur

Die Durchführung des Projekts sowie die Beteiligung der relevanten Akteure und der Öffentlichkeit wird in unterschiedlichen Gruppen organisiert, die in der nachfolgenden Abbildung dargestellt sind. Vertreterinnen und Vertreter von Parteien oder Gremien werden über den Rat der Gemeinde und den Hauptausschuss durch die Verwaltung regelmäßig informiert und eingebunden.

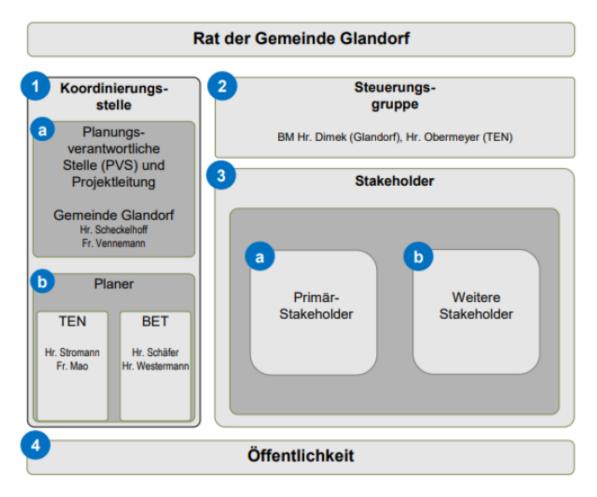


Abbildung 3: Projektstruktur zur Erstellung der kommunalen Wärmeplanung Glandorf

Das Projekt wird in einer Projektstruktur durchgeführt, die nachfolgend beschrieben wird:

- Die Gruppe 1 ist die zentrale Koordinierungsstelle. Sie besteht aus der "planungsverantwortlichen Stelle", also der Gemeinde, und den operativen Planern (TEN und BET).
- Die **Steuerungsgruppe** umfasst als **Gruppe 2** die oberste Verwaltungsebene, also jene, die formal und politisch Verantwortung für die Ergebnisse tragen.
- Die Gruppe 3 umfasst als wesentliche Stakeholder:
 Dies sind Gruppen, Unternehmen, Einrichtungen und Institutionen, Stakeholder, deren Einbindung und Akzeptanz für die Planung erfolgsrelevant sind sowie weitere Stakeholder als ebenfalls wichtige Betroffene. Hierbei handelt es sich um

- alle Betroffenen, Anspruchsgruppen und Beteiligten, die im Rahmen der kWP einbezogen oder zumindest gehört werden sollen.
- Als Öffentlichkeit gilt schließlich die Gruppe 4; ihr sind alle nicht in den Gruppen
 1 bis 3 zugehörigen Personen und Organisationen zugehörig.

0.4 Systematik der durchgeführten Wärmeplanung und Struktur dieses Berichts

Die Arbeitsschritte zur Erstellung der kommunalen Wärmeplanung orientieren sich am Technischen Annex der KRL. Die Wärmeplanung umfasst folgende Arbeitspakete (AP), die die Gliederung des Endberichts bestimmen:

P	Kapitel 1	AP 1: Bestandsanalyse
	Kapitel 2	AP 2: Potenzialanalyse
1	Kapitel 3	AP 3 A: Zielszenarien und Entwicklungspfade
	Kapitel 4	AP 3 B: Strategie und Maßnahmenkatalog
	Kapitel 5.1	AP 4: Beteiligung von Verwaltungseinheiten und allen weiteren relevanten Akteuren
Ø _x	Kapitel 5.2	AP 5: Verstetigungsstrategie
1	Kapitel 5.3	AP 6: Controlling-Konzept
Montage (Marian)	Kapitel 5.4	AP 7: Kommunikationsstrategie

Abbildung 4: Arbeitsschritte zur Erstellung der kommunalen Wärmeplanung

1 Bestandsanalyse

1.1 Aufgabenstellung

Welche Wärmebedarfe bestehen und wie werden sie derzeit bedient?

Die Bestandsanalyse zeigt im Ergebnis, wie sich die Ausgangssituation der heutigen Wärmeversorgung darstellt. Es ist zu klären, welche **Gebäudetypen** in den Gemarkungsgrenzen der Kommune existieren, wo sie liegen und welchen **Wärmebedarf** sie letztlich – auch unter Berücksichtigung ihres Baualters und Sanierungszustandes – haben. In Verbindung mit der aktuellen **Heiztechnologie** der Gebäude kann ein gutes Abbild der Ausgangslage gezeichnet werden.

Alle Informationen werden digital in einem "Wärmeatlas" zusammengetragen. Der Wärmeatlas ist das zentrale Arbeitsergebnis der Bestandsanalyse. Er ist die Basis für die Potenzialanalyse, die auf diesen Informationen aufbauend bewertet, wie die Primärziele der Wärmewende umsetzbar sind. Das betrifft zum einen die Wärmebedarfsreduktion (z. B. durch Sanierungsmaßnahmen der Gebäude) und zum anderen Deckung der verbleibenden Restwärmebedarfe mit erneuerbarer Wärme oder unvermeidbarer Abwärme aus Industrie- oder Gewerbebetrieben.

Der Wärmeatlas kann aus öffentlich zugänglichen Daten und auf der Basis einer bereits verfügbaren Grundlage (z. B. Wärmeatlas der KEAN in Niedersachsen) erstellt werden. Zur Plausibilisierung erfolgt ein Abgleich mit den Energieverbrauchsdaten (insbesondere den Gasverbrauchsdaten, aber auch Wärmeverbrauchsdaten aus Wärmenetzen) des örtlichen Energieversorgers sowie, falls verfügbar, den Schornsteinfegerdaten. So wird sichergestellt, dass der Wärmeatlas den Wärmeverbrauch vor Ort korrekt abbildet und auch unbekannte Wärmeverbräuche, z. B. mit Heizöl oder Kohle, gut erfasst sind.

Die Darstellungen im Wärmeatlas erfolgen aggregiert, sodass keine personalisierbaren Rückschlüsse gezogen werden können und damit die Anforderungen an den Datenschutz gemäß Datenschutzgrundverordnung (DSGVO) jederzeit eingehalten werden.

1.2 Datenbasis

1.2.1 Datenquellen

Folgende Daten standen für die Auswertung zur Verfügung:

- Amtliche, öffentliche Daten zu Flurstücken, Adresspunkten und Gebäuden
- Wärmebedarfskarte der Klimaschutz- und Energieagentur Niedersachsen (KEAN)
- Gas- und Wärmeverbrauchsdaten, Gasnetzdaten
- Daten der vorhandenen Wärmenetze (teilweise unvollständig) inkl. Wärmespeicher und Wärmeerzeugungsanlagen
- Daten zu Abwasserkanälen
- Detaillierte Schornsteinfegerdaten

1.2.2 KEAN-Wärmeatlas

Das Datenfundament für die Bestandsanalyse legt die "Wärmebedarfskarte Niedersachsen". Die Klimaschutz- und Energieagentur Niedersachsen (KEAN)

stellt kommunenscharf Daten² eigens zum Zwecke der kommunalen Wärmeplanung bereit. Die zentrale Information dieser GIS-Daten sind die **Hausumringe** aller Gebäude in der Kommune. Diese tragen jeweils weitere Informationen ("Attribute"), die es ermöglichen, Klassen, Typen, Cluster usw. zu bilden und Analysen zu erstellen. Die wesentlichen Attribute der Hausumringe sind Informationen zum gebäudescharfen **Wärmebedarf**. Konkret handelt es sich u. a. um folgende Attribute:

- Einteilung der Umringe in Wohn- und Nicht-Wohngebäude
- Einteilung der Wohngebäude in Wohngebäudetypen (Einfamilienhäuser (EFH),
 Reihenhäuser (RH), Mehrfamilienhäuser (MFH), Große Mehrfamilienhäuser (GMFH))
- beheizt (ja oder nein)
- Nutzfläche
- Wärmebedarfe (Raumwärme, Warmwasser und Summe)
- Indikative Energieeffizienzklasse
- Baualter
- Adresse

Dieser KEAN-Wärmeatlas ist absolut fundamental für die Analysen. Die Daten sind jedoch nicht lückenlos oder plausibilisiert. Um eine valide Analyse durchzuführen, werden diese Basisdaten aus dem KEAN-Wärmeatlas um Zusatzinformationen ergänzt, z. B. den Gasverbrauchsdaten oder den Schornsteinfegerdaten (vgl. Kap. 1.2.3 und 1.2.4).

https://www.klimaschutz-niedersachsen.de/zielgruppen/kommunen/KWP-NDS_Waermebedarfskarte.php

Diese schließen Lücken und reichern den KEAN-Wärmeatlas um weitere Informationen und Attribute an, erhöhen also Breite, Tiefe und Granularität der Daten.

1.2.3 Daten von Versorgungsunternehmen und Erzeugungsanlagen

Darüber hinaus wurden außerdem die Daten der **Gebiete mit Gasverteilnetzen** und die **Gasverbrauchsdaten** ermittelt. Diese stellt der örtliche Gasnetzbetreiber zur Verfügung. Wo keine Gasnetze vorhanden sind, kann das Heizen mit Gas (außer Flüssiggas) ausgeschlossen werden.

Für bestehende **Wärmenetze** (Wärmenetz der TEN sowie ein an die Biogasanlage angeschlossenes Wärmenetz) wurden die Daten vom Wärmenetzbetreiber erhoben und in die kartografischen Darstellungen übernommen. Möglicherweise bestehende Wärmenetze wurden dort angenommen, wo es wahrscheinlich erscheint: Dies gilt vornehmlich für größere Gebiete unbekannter Beheizung, die meist die gleiche Bebauungsstruktur und oft den gleichen Eigentümer aufweisen. Meist liegt in dem Gebiet ein Gebäude mit sehr hohem Gasverbrauch vor oder in den Schornsteinfegerdaten ist eine Heizung mit verhältnismäßig hoher Leistung in einem Gebäude vorhanden, in welchem in solchen Fällen eine Heizzentrale vermutet wird. Je nach Datenlage sind auch dazu Annahmen zu treffen. Dabei werden beispielsweise Trassenverläufe und die Anzahl der Anschlüsse, falls nicht bekannt, abgeschätzt. Inbetriebnahmejahre und Temperaturen sind dann jedoch unbekannt.

Abwassernetze werden in den Wärmeatlas ebenfalls mit aufgenommen, damit ggf. die Nutzung von Wärme aus Abwässern im Rahmen der Potenzialanalyse untersucht werden kann. Im hier vorliegenden Fall liegen keine Abwasserleitungen mit einem Durchmesser > DN 800 im Bestand vor, ab dem eine Nutzung der Abwasserwärme in Betracht gezogen werden sollte.

Weitere "blinde Flecken" sind über die Kenntnis von **Wärmeerzeugungsanlagen**, die in Wärmenetze einspeisen, zu eliminieren. Bekannte Anlagenbetreiber wurden kontaktiert und um Auskunft zu den Versorgungsgegebenheiten gebeten. Bei unbekannten Betreibern kann auf die Schornsteinfegerdaten zurückgegriffen werden, um die wahrscheinliche Versorgungsstruktur abzubilden.

Auch die Informationen zu eventuellen **Wärme- und Gasspeichern** werden bei den bekannten Betreibern von Wärmeerzeugungsanlagen bzw. Gasnetzen angefragt und, falls vorhanden, in die Darstellung übernommen.

Wenn Erzeugungsanlagen von **Wasserstoff** oder **synthetischen Gasen** existieren, ist dies in der Regel bekannt. Auch diese Daten fließen nach Betreiberangaben in die Bestandsanalyse ein, um später entsprechende Potenziale abzubilden.

1.2.4 Zusatzinformationen und Korrekturen

Zur besseren Abbildung der Situation in Glandorf wird der Wärmeatlas mit weiteren Informationen angereichert und vorhandene Werte, v. a. der Wärmebedarf, geprüft und

bei Bedarf angepasst. Dabei ist der Endenergieverbrauch die eingesetzte Energie, z. B. die kWh Gas oder Heizöl die in einem Wärmeerzeuger eingesetzt wird, also den entsprechenden Wirkungsgrad einer Heizungsanlage berücksichtigt. Der Wärmebedarf hingegen ist die genutzte Wärme, d. h. die Wärme aus dem Heizkörper und das warme Wasser aus dem Wasserhahn.

1.2.4.1 Adressdaten

Mitunter ist einem Hausumring im KEAN-Wärmeatlas keine Adresse zugeordnet oder mehrere Adressen liegen in einem Umring. Zum Schließen dieser Lücken bzw. zur Beseitigung der Unschärfen werden, um schließlich den KEAN-Wärmeatlas vollständig mit Adressen zu befüllen, folgende Daten verwendet:

- Gebäudereferenzen vom Land Niedersachsen³
- Postleitzahlen⁴

Liegen mehrere Gebäudereferenzen in einem Umring, wird dieser zerteilt. Umringe ohne Adresse bekommen eine Adresse zugeordnet. Dabei greift ein Algorithmus auf folgende Daten zu und entscheidet, welche Adresse zugeordnet wird:

- Gebäude mit eindeutiger Adresse aus dem KEAN-Wärmeatlas
- Flurstücke⁵
- Distanz zu bekannten Adressen

Anschließend werden die Umringe mit gleicher Adresse aggregiert.

Das Ergebnis ist ein georeferenzierter, adressscharfer Wärmeatlas.

Darstellungen und Auswertungen erfolgen immer in aggregierter Form DSGVO-konform, i. d. R. Baublock scharf.

1.2.4.2 Verbrauchsdaten

Der KEAN-Wärmeatlas basiert auf Abschätzungen und Korrelationen etc. Ein Abgleich mit tatsächlichen Verbrauchsdaten stellt sicher, dass der Wärmeatlas die Situation und den Gebäudebestand vor Ort auch realitätsnah abbildet. Hierfür werden (sofern vorliegend) Verbrauchsdaten genutzt:

- Gasverbrauchsdaten (2021, 2022, 2023)⁶
- Wärmeverbrauchsdaten für Wärmenetze (2021, 2022, 2023)⁷
- Verbräuche und Energieträger in den kommunalen Liegenschaften der Kommune (2021, 2022, 2023)
- Stromerzeuger (Stand Mai 2024)⁸

_

³ Versorger

⁴ Quelle: OpenStreetMap

⁵ Versorger/Gemeinde

Quelle: Versorger
 Quelle: Versorger

⁸ https://www.marktstammdatenregister.de/MaStR

- Standorte und wenn möglich Erzeugungsmengen von Wärmeerzeugungsanlagen, die in ein Wärmenetz einspeisen (aktueller Datenstand)⁹
- Erdwärmesonden mit Wärmenutzung (→ Annahme von Sole-Wärmepumpen, Stand März 2024)

Da die Verbrauchsdaten stark von der Witterung abhängen, wird eine Witterungsbereinigung über Gradtagzahlen¹⁰ durchgeführt. Dadurch werden die Verbräuche, die jahresscharf vorliegen, auf ein Jahr umgerechnet, welches dem langjährigen Mittel entspricht, und so vergleichbar gemacht.

Anschließend erfolgt eine Umrechnung in Wärmeverbräuche über anlagenspezifische Wirkungsgrade. Auf mehrere Adressen aggregierte Daten, z. B. wenn mehrere Gebäude über einen Gasanschluss versorgt werden, werden anhand der Wärmebedarfe im Wärmeatlas zerteilt. Anschließend erfolgt ein adressscharfer Abgleich

- der Wärmebedarfe aus dem Wärmeatlas
- mit den Wärmeverbräuchen aus den Verbrauchsdaten.

Tatsächlich bekannte Verbräuche fließen natürlich unverändert (lediglich umgerechnet in Wärmeverbräuche) in den Wärmeatlas ein. Für "unbekannte" Gebäude werden auf Basis des Vergleichs typenscharfe Korrekturfaktoren abgeleitet. Diesbezügliche Auswertungen zeigen z. B., dass der Wärmebedarf eines Mehrfamilienhauses aus den 1980er Jahren in der Regel im KEAN-Wärmeatlas um ca. 10 % überschätzt wird. Entsprechend erfolgt im Wärmeatlas eine Korrektur der dort (zunächst abgeschätzten) Wärmebedarfe dieses Gebäudetyps.

1.2.4.3 Weitere Attribute

Auf Basis der Gebäudenutzungsarten (bereits im KEAN-Wärmeatlas enthalten) oder Informationen zu Industrieunternehmen (über die Ortskenntnis der Gemeinde bzw. der TEN) wird jedem Hausumring ein **Sektor** (Haushalte, Gewerbe, Industrie) zugeordnet. Zusätzlich werden die kommunalen Liegenschaften als solche markiert. Prozesswärme wird bei bestimmten Gebäude-Nutzungsarten angenommen, bei denen die spezifischen Verbräuche oberhalb eines Grenzwertes liegen.

Jeder Hausumring hat durch diesen Schritt weitere **Attribute** (neben den oben bereits beim KEAN-Wärmeatlas genannten) erhalten:

- Sektor
- Ausweisung kommunaler Liegenschaften
- Bekannte Energieträger
- Auf Basis des Abgleichs neu berechnete Energieeffizienzklassen

-

⁹ Anlagenbetreiber

¹⁰ https://www.iwu.de/publikationen/fachinformationen/energiebilanzen/gradtagzahltool/

chen dargestellt werden.

Die Gebäude werden ferner einzelnen **Baublöcken** und **Straßenzügen** zugeordnet. Durch diese Kennzeichnung ist es möglich, Wärmeliniendichten (anhand der Wärmebedarfe aus dem konsolidierten Wärmeatlas) zu ermitteln oder Baublock scharfe Auswertungen durchzuführen. Dabei wurden Baublöcke, die sehr große unbebaute Flächen umfassen, zugeschnitten, sodass nur die relevanten Flä-

Das Ergebnis ist ein konsolidierter, georeferenzierter, adressscharfer Wärmeatlas, der nun auch die Wärmebedarfe vor Ort gut abbildet.

1.2.4.4 Denkmalschutz und Baublöcke

Um die Qualität der Bestandsanalyse weiter zu erhöhen, wird im nächsten Schritt festgestellt, welche Gebäude unter **Denkmalschutz** stehen. Dies ist v. a. für eine realistische Einschätzung von Potenzialen zur Wärmebedarfsreduktion (Sanierung/Dämmung) von Bedeutung. Für diese Gebäude, die mit dem Attribut "Denkmal" gekennzeichnet sind, sind die

Möglichkeiten der Sanierung grundsätzlich eingeschränkt oder besonders kostenintensiv. Bei Prognosen und Potenzialabschätzungen ist jedenfalls eine Einzelfallbetrachtung nahezulegen.

1.2.4.5 Schornsteinfegerdaten

Neben den Primärdatenquellen mit KEAN-Wärmeatlas und Verbrauchsdaten stellen die "Schornsteinfegerdaten" die wichtigsten Informationen zur realitätsnahen Abbildung der Bedingungen im Modell zur Verfügung. Sie liefern

sowohl aggregierte Informationen für den Schornsteinfegerbezirk als auch die Informationen über die tatsächlich in den Gebäuden verwendeten **Heizungstechnologien**.

Diese Informationen sind hilfreich, insbesondere für die Zuordnung des Heizungstyps bei Gebäuden, zu denen keine Verbrauchsdaten vorliegen (z. B. Ölheizungen) oder des Alters der Heizungsanlagen.

Es erfolgt zunächst wieder eine Zuordnung der durch die Schornsteinfegerinnen und Schornsteinfeger erfassten Wohnhäuser zu den Gebäuden des Wärmeatlas. Das besondere Augenmerk liegt hier auf den Zentralheizungen, da diese den Großteil der Wärme bereitstellen. Dabei werden bekannte Energieträger (wie z. B. Gas aus den Verbrauchsdaten) berücksichtigt.

1.2.4.6 Finale Herleitung

Nach der Verarbeitung der Schornsteinfegerdaten verbleibt weiterhin eine gewisse Anzahl an Gebäuden, denen kein Energieträger zugeordnet werden kann. Dies sind entweder Gebäude, die unbekannterweise über andere Gebäude mitversorgt werden oder es werden Technologien eingesetzt, die bisher nicht erfasst wurden wie z. B. Wärmepumpen und Nachtspeicherheizungen. Diese werden über die Schornsteinfegerinnen

und Schornsteinfeger nicht erfasst. Für Wärmepumpen und Nachtspeicherheizungen werden die bereits verteilten Anteile mit dem Bundeslanddurchschnitt abgeschätzt (Bundeslandstatistik des BDEW¹¹). Restliche Energieträger, die u. U. in der Mitversorgung genutzt werden, werden analog abgeschätzt.

Folgende Beispiele sollen das Vorgehen illustrieren:

- Aus dem KEAN-Wärmeatlas sind die Baujahre der Gebäude adressscharf bekannt. Die durch den Abgleich mit den Daten der Schornsteinfegerinnen und Schornsteinfeger ermittelte Anzahl der Wärmepumpen wird auf die Wohngebäude (zufällig) verteilt, die nach dem Jahr 2000 errichtet worden sind. Denn Wärmepumpen sind noch eine verhältnismäßig neue Technologie und wurden bisher eher im Neubau eingesetzt. Aus dieser bekannten Korrelation zwischen Gebäudealter und Eignung für Wärmepumpen kann eine hinreichend genaue Zuordnung dieses Heizungstyps erfolgen.
- Analog sind Nachtspeicherheizungen in aller Regel in Gebäuden aus den 1950ern und 1960ern in Anwendung. Danach wurde dieser Heizungstyp (Ausnahmen bestätigen auch hier die Regel) kaum mehr eingebaut.
- Die restlichen Technologien werden zufällig verteilt, sodass sich die vorher ermittelten Anteile ergeben.

1.2.4.7 Treibhausgasemissionsfaktoren

Basierend auf dem Energieträger je Gebäude, dem Wärmebedarf sowie Annahmen zu Wirkungsgraden wird anschließend der Endenergieverbrauch ermittelt. Basierend auf Emissionsfaktoren werden daraus die Treibhausgasemissionen berechnet. Dabei wird auf die Emissionsfaktoren aus dem Leitfaden¹² vom BMWK und BMWSB sowie für dort nicht enthaltene Emissionsfaktoren auf den Leitfaden der KEA-BW¹³ und das GEG zurückgegriffen. Bei Wärmenetzen wird mit den verfügbaren Informationen jeweils ein Emissionsfaktor abgeleitet. Bei fehlenden Daten werden Annahmen basierend auf vergleichbaren bekannten Netzen getroffen (z. B. Netzverluste, Wirkungsgrade der Erzeugungsanlagen etc.).

Das Ergebnis ist ein konsolidierter, georeferenzierter, adressscharfer Wärmeatlas, der den Hauptenergieträger und Endenergieverbrauch sowie die Emissionen enthält.

¹¹ https://www.bdew.de/media/documents/BDEW_Heizungsmarkt_2023_Regionalbericht_Nord-rhein-Westfalen 20231128.pdf)

https://www.bmwsb.bund.de/SharedDocs/downloads/Webs/BMWSB/DE/veroeffentlichungen/wohnen/leitfaden-waermeplanung-lang.pdf;jsessionid=FCA79E552DD1074BA79290BBE5408AAB.live872? blob=publicationFile&v=2

https://www.kea-bw.de/waermewende/wissensportal/kommunale-waermeplanung/einfuehrung-in-den-technikkatalog#c7393-content-1, https://www.ifeu.de/fileadmin/uploads/BISKO_Methodenpapier_kurz_ifeu_Nov19.pdf

1.3 Bestandsanalyse: Status quo der Wärmeversorgung in Glandorf

Mit den in Kapitel 1.2 beschriebenen Datenquellen werden im Folgenden die relevanten Datenauswertungen dargestellt und beschrieben. Die Darstellungen orientieren sich an den geforderten Darstellungen gemäß § 23 WPG und den Ausführungen im Anhang 2, Nr. I zum § 23 WPG.

Die folgenden Darstellungen basieren auf den oben genannten Daten. Hervorzuheben ist, dass es sich nicht um ein klar definiertes Jahr handelt, da verschiedene Datenstände kombiniert wurden (z. B. Verbrauchsdaten 2021-2023 mit Schornsteinfegerdaten aus 2024). Des Weiteren sind die Verbrauchsdaten witterungsbereinigt und gemittelt worden. Somit bildet der Status quo alle Bedarfe und Verbräuche basierend auf dem langjährigen Mittel ab. Die Verteilung der Energieträger ist durch die Schornsteinfegerdaten möglichst plausibilisiert worden.

1.3.1 Endenergieverbrauch und Treibhausgasemissionen für Wärme

1.3.1.1 Absoluter Endenergieverbrauch und Emissionen

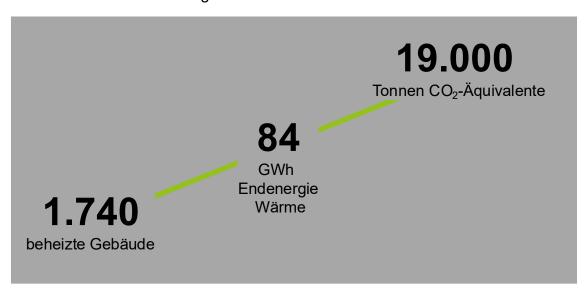


Abbildung 5: Das Wesentliche zur Ausgangslage in Glandorf

In Glandorf werden heute **1.740 Gebäude** beheizt. Der daraus resultierende, aktuelle, jährliche **Endenergieverbrauch** von Wärme beträgt **84 GWh** (84 Mio. kWh). Die dadurch erzeugten Treibhausgasemissionen betragen jährlich **19.000 Tonnen CO₂-Äquivalente**.

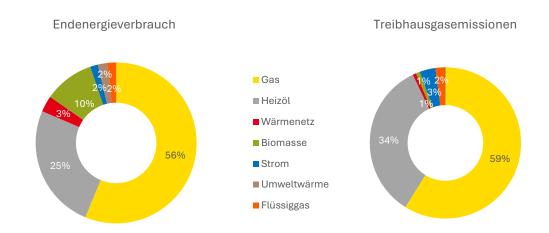


Abbildung 6: Anteile der Energieträger am Endenergieverbrauch für Wärme (links) und an den korrespondierenden Treibausgasemissionen (rechts) in Glandorf

Mehr als 8 von 10 Heizungen werden heute fossil betrieben. Den größten Anteil macht Erdgas aus, gefolgt von Heizöl. Dies schlägt sich konsequent in den zurechenbaren Treibhausgasemissionen nieder.

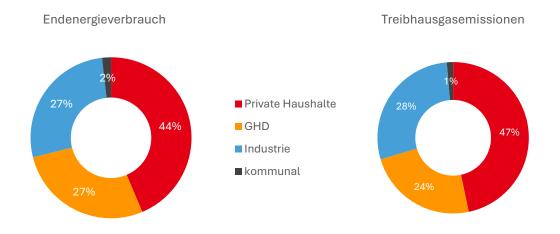


Abbildung 7: Anteile der Sektoren am Endenergieverbrauch für Wärme (links) und an den korrespondierenden Treibausgasemissionen (rechts) in Glandorf

Verursacher ("Sektoren") dieser Verbräuche sind mit ca. 44 % hauptsächlich **Privathaushalte**, mit 27 % der Sektor Gewerbe, Handel und Dienstleistungen (GHD) und mit 27 % der Industriesektor. Mit einem Anteil von 2 % ist der Heizenergieverbrauch der Kommune moderat. Bei den Anteilen an den Treibhausgasemissionen ergibt sich ein sehr ähnliches Bild.

1.3.1.2 Anteil grüner Energien am Endenergieverbrauch

Der aktuelle Anteil erneuerbarer Energien und unvermeidbarer Abwärme am jährlichen Endenergieverbrauch von Wärme beträgt aktuell lediglich **15,5** %. Davon stellt Biomasse (Biogas) den größten Anteil.

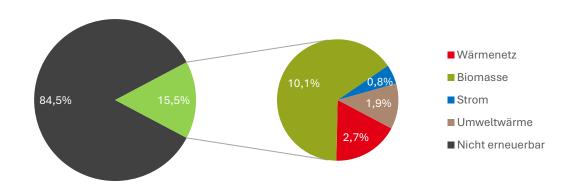


Abbildung 8: Anteil "grüner" Energien am Endenergieverbrauch in Glandorf

1.3.1.3 Leitungsgebundene Wärme

Der aktuelle, jährliche Anteil am Endenergieverbrauch durch **leitungsgebundene Wärme** ist sehr gering und liegt nur bei 3,0 %, der absolute Wert liegt bei 2,7 GWh.

1.3.1.4 Erneuerbarer Anteil an der leitungsgebundenen Wärme

Erneuerbare Energien (bzw. unvermeidbare Abwärme) für die leitungsgebundene Wärme haben am jährlichen Endenergieverbrauch einen Anteil von etwa 84 %. Hierbei handelt es sich ausschließlich um Biogas.

1.3.1.5 Dezentrale Erzeuger

Die Anzahl der Wärmeerzeuger wird v. a. über die Schornsteinfegerdaten bzw. die Gasund Wärmeverbrauchsdaten ermittelt, da daraus z. B. Etagenheizungen ersichtlich sind.
Überall, wo Gebäude mitversorgt werden (Gebäudenetze o. ä.), ist kein eigener Wärmeerzeuger vorhanden. Gebäude, die an Wärmenetze angeschlossen sind, haben eine
Übergabestation, gehen also damit in diese Statistik ein. Überall anders wird von einem
Wärmeerzeuger ausgegangen (Wärmepumpen, Nachtspeicherheizungen etc.). Insgesamt handelt es sich um 1.987 **Wärmeerzeuger** mit folgenden Anteilen der jeweiligen
Typen:

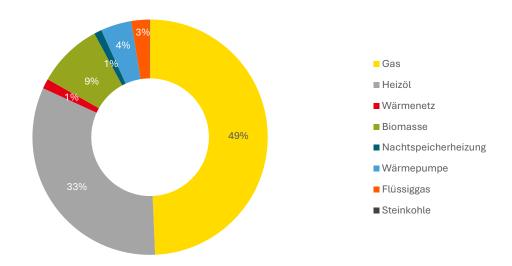


Abbildung 9: Anteile der Wärmeerzeugerarten in Glandorf

Dabei liegt die Anzahl aufgrund von Etagenheizungen oder Backup-Lösungen oberhalb der Gesamtanzahl der Gebäude (Wohn- und Nichtwohngebäude). 49 % der Wärmeerzeuger werden mit Gas befeuert, weitere 33 % mit Heizöl und 3 % mit Flüssiggas. Somit werden etwa 85 % der Wärmeerzeuger mit fossilen Energieträgern betrieben.

1.3.2 Beheizungsstruktur

1.3.2.1 Heizungsalter

Abbildung 10 zeigt die Verteilung der Heizungsalter der Heizungen, welche aus den Schornsteinfegerdaten abgeleitet wurde. 43 % der Heizungen sind jünger als 20 Jahre, wohingegen 18 % der Heizungen älter als 30 Jahre sind. Hier besteht entsprechender Handlungsbedarf, da alte Heizungen oftmals niedrigere Effizienzen aufweisen. Dabei haben 13 % der Heizungen ein unbekanntes Alter. Dies kann verschiedene Gründe haben: Die Heizung wird nicht über die Schornsteinfegerinnen und Schornsteinfeger erfasst, z. B. Übergabestationen an einem Wärmenetz oder Wärmepumpen, oder es konnte keine eindeutige Zuordnung über die Adressen vorgenommen werden.

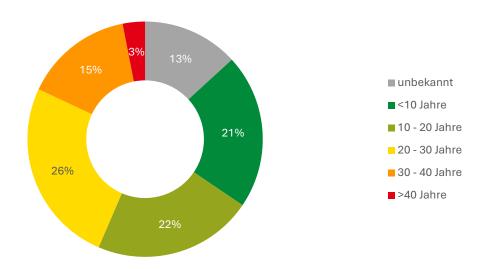


Abbildung 10: Verteilung der Heizungsalter der Heizungen in Glandorf

In der folgenden Abbildung 11 ist die Verteilung der Heizungen, die älter sind als 30 Jahre, grafisch dargestellt. Für die Auswertung wurden die unbekannten Heizungsalter nicht berücksichtigt, die Anteile beziehen sich also lediglich auf den bekannten Anteil. Dargestellt sind auf Baublocksebene¹⁴ aggregierte Werte.

Es zeigt sich in der Darstellung, dass es vereinzelt Bereiche gibt, in denen der Anteil alter Heizungen recht hoch ist, diese verteilen sich über das gesamte Gemeindegebiet. In den meisten Bereichen liegt der Anteil unterhalb von 40 %.

-

¹⁴ Baublöcke mit zu wenigen Gebäuden sind aus Datenschutzgründen aggregiert worden.

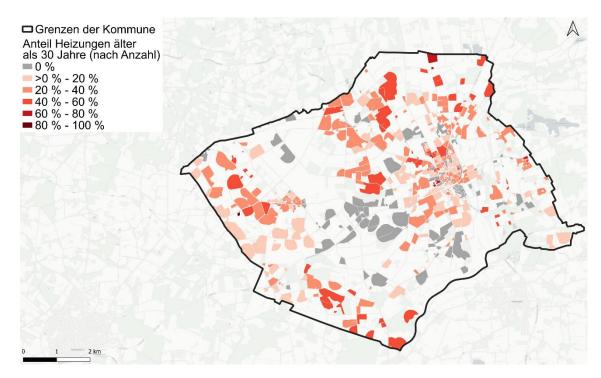


Abbildung 11: Anteil der Heizungen (nach Anzahl), die älter sind als 30 Jahre, in Glandorf (auf Baublöcke bezogen) ¹

1.3.2.2 Wärmeverbrauchsdichten

Die Darstellungen zur Beheizungsstruktur zeigen lokale Konzentrationen auf. Die **Wärmeverbrauchsdichte** bildet den Wärmebedarf pro Fläche ab. Je dunkler die Färbung des jeweiligen Baublocks, desto höher ist der spezifische Verbrauch.

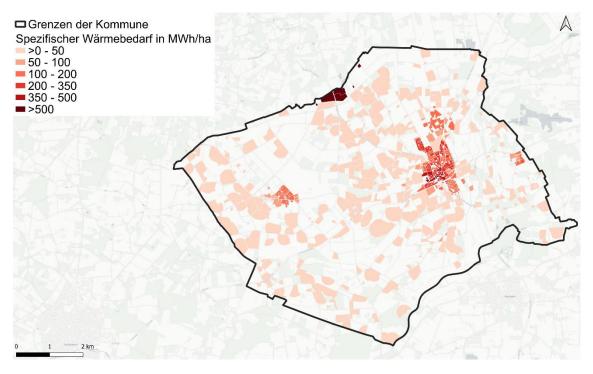


Abbildung 12: Wärmeverbrauchsdichte in Glandorf (auf Baublöcke bezogen) 1

Es ist gut zu erkennen, dass der Wärmeverbrauch im **Ortskern von Glandorf** höhere spezifische Verbräuche zeigt und im Ortskern konzentriert ist. Dies liegt insbesondere an Gewerbeunternehmen, einem landwirtschaftlichen Betrieb im Westen, öffentlichen Liegenschaften sowie an dichterer Wohnbebauung. Einige weitere Quartiere mit leicht erhöhten spezifischen Wärmebedarfen sind auf der Karte gut zu erkennen. Zum einen befindet sich **nördlich des Ortskerns** ein **Gewerbegebiet mit einem großen Industriebetrieb**. Zum anderen liegen im **Osten der Kommune** sowie im Westen in **Schwege** zwei kleinere **Wohngebiete** mit leicht erhöhter Wärmeverbrauchsdichte vor. Des Weiteren liegen in **Norden der Kommune** mehrere Baublöcke mit Wärmeverbrauchsdichten über 500 MWh/ha vor. In diesen sind vor allem ein **Industriebetrieb**, aber auch ein landwirtschaftlicher Betrieb sowie Gewerbe ansässig. Im Rahmen der Potenzialanalyse und der Stakeholderbeteiligung wurden die Gewerbe- und Industriegebiete auf eine mögliche Bereitstellung von Abwärme näher untersucht. In sehr hellem grün sind in der Hintergrundkarte Gebiete dargestellt, die entweder keine Siedlungsgebiete oder Waldfläche sind und hier ohne Belang sind.

1.3.2.3 Wärmeliniendichten

Eine weitere Form der Darstellung von Verbrauchsdichten sind die **Wärmeliniendichten**. Hierbei wird der Wärmebedarf nicht wie oben auf die Flächen, sondern auf die Straßenmeter bezogen. Dies bildet die Sicht eines Versorgers ab, der aus den Wärmeliniendichten erkennen kann, wie viel Wärme pro Meter Versorgungsleitung (nach heutigem Verbrauchsverhalten) bei einer gedachten leitungsgebundenen Wärmeversorgung hier zu erwarten wäre. Es handelt sich also um einen Indikator für eine spezifische Absatzzahl, der anzeigt, in welcher Straße oder in welchen Quartieren sich eine leitungsgebundene Versorgung empfehlen könnte.

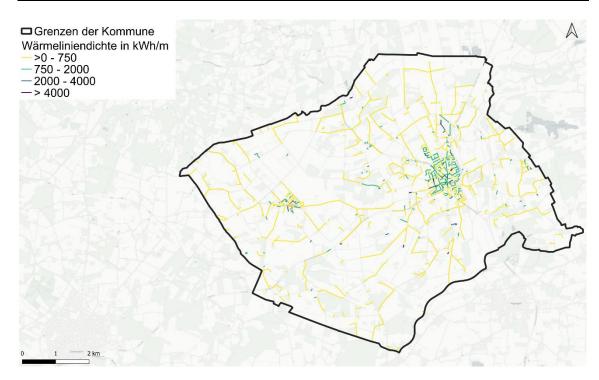


Abbildung 13: Wärmeliniendichten in Glandorf¹

Insgesamt sind die **Strukturen**, wie sie bei der Betrachtung der Wärmeverbrauchsdichte ersichtlich waren, auch hier **wiederzuerkennen**. Dabei kann es vorkommen, dass ein Straßenzug nur entlang seines Anfangs bebaut ist und nachfolgend unbebaut ist (z. B. entlang von Feldern oder Wald). Diese weisen jedoch im Allgemeinen immer geringe Wärmeliniendichten auf und sind somit für die folgende Betrachtung nicht relevant.

Eine lokale Bedarfskonzentration für Wärme ist noch nicht notwendigerweise pauschal die Rechtfertigung für eine leitungsgebundene Infrastruktur, konkret eine Errichtung eines Wärmenetzes. Ob sich ein solches Wärmenetz technisch-wirtschaftlich darstellen lässt, hängt ganz wesentlich von der Entfernung einer möglichen Wärmequelle mit ausreichender Leistung und Kapazität ab, dem Anschlussgrad der anzuschließenden Gebäude und den örtlichen Errichtungskosten. Grundsätzlich ist es sinnvoll, wenn die Wärmeliniendichte auf der ganzen Versorgungsleitung hoch ist, nicht nur im Zielgebiet. Lange Zuleitungen verschlechtern diese Kennzahl. Die Anzahl bzw. die Länge der identifizierten Straßenabschnitte mit attraktiven Wärmeliniendichten > 2.000 kWh/m sind eher gering. Höhere Wärmeliniendichten sind vor allem im Ortskern von Glandorf zu erkennen.

1.3.2.4 Räumliche Verteilung der Energieträger und Treibhausgasemissionen

Abbildung 14 zeigt den nach Endenergieverbrauch dominierenden Energieträger je Baublock. Dies bestätigt den sehr hohen Anteil von Erdgas sowie Heizöl in der aktuellen Beheizung. Vereinzelt sind Bereiche erkennbar, die durch Biomasse, Flüssiggas, Umweltwärme sowie Wärmenetz dominiert werden.

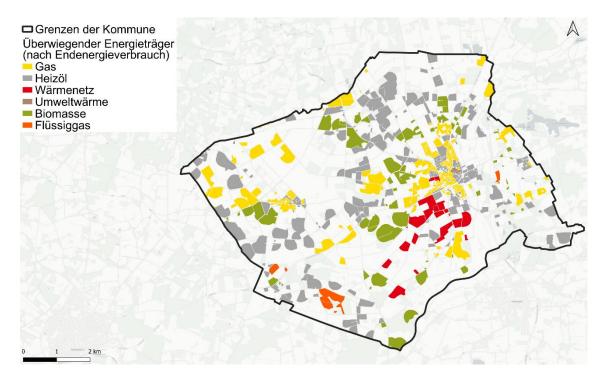


Abbildung 14: Überwiegende Energieträger in Glandorf (auf Baublöcke bezogen) 1

In Abbildung 15 sind die Treibhausgasemissionen je Baublock bezogen auf seine Fläche gezeigt. Bei einer geringen Anzahl von Gebäuden im jeweiligen Baublock (< 5 Gebäude je Baublock) werden Baublöcke aggregiert und gemeinsam bewertet.

Die Emissionen korrelieren dabei v. a. mit der Bebauungsdichte. Außerdem sind auch Gewerbe- und Industriegebiete meist mit hohen Emissionen vertreten.

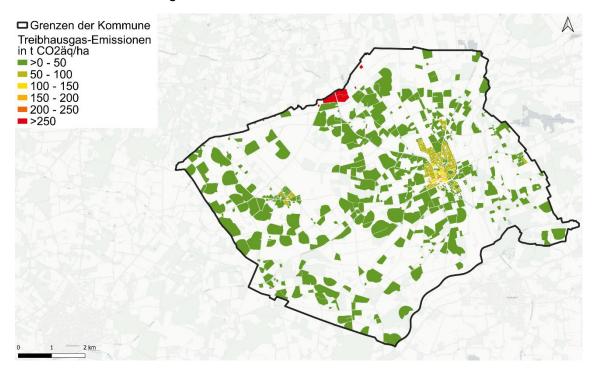


Abbildung 15: Spezifische Treibhausgasemissionen in Glandorf (auf Baublöcke bezogen) ¹

1.3.2.5 Endenergieverbrauch nach Energieträgern

Nachfolgend werden die **Endenergieverbräuche baublockbezogen** nach dem Anteil des jeweiligen **Endenergieträgers** dargestellt. Hieraus lässt sich nicht direkt ableiten, welcher Heizungstyp in welchen Quartieren vorherrschend ist, sondern wo der jeweilige Heizungstyp mehr und weniger konzentriert ("überhaupt") auftritt. Die Unterscheidung ist fein, aber wichtig.

Nachfolgend finden sich Grafiken für die Energieträger: Gas (gelb) und Heizöl (hellgrau). Die Einfärbung folgt immer der Logik: Je stärker der Farbton, desto höher der Anteil. Baublöcke, in denen der Energieträger nicht genutzt wird, sind nicht dargestellt.

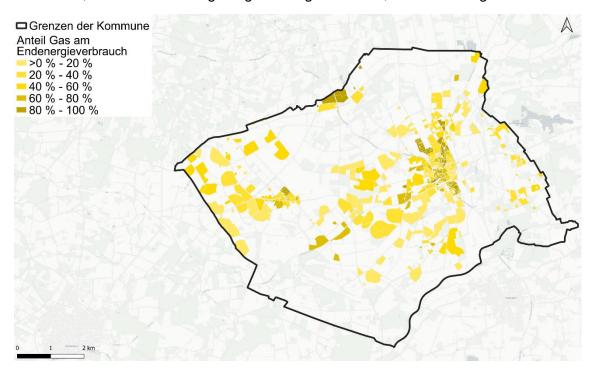


Abbildung 16: Anteil Gas am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen)

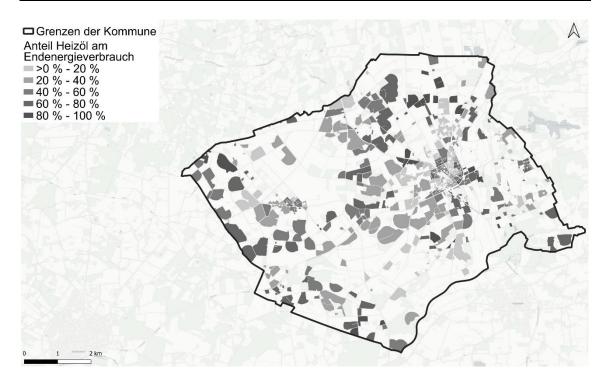


Abbildung 17: Anteil Heizöl am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen) ¹

Die Darstellungen der Energieträger Biomasse, Strom, Umweltwärme, Steinkohle, Wärmenetz und Flüssiggas sind im Anhang zu finden.

Gas weist eine Verteilung auf, die sich stärker auf die Gebiete rund um den Ortskern von Glandorf, Schwege sowie den Industriestandort im Norden der Gemeinde konzentriert.

Heizöl wird zwar auch in diesen Gebieten genutzt, ist jedoch stärker in Gebieten außerhalb der Ortskerne vertreten. Während der Endenergieverbrauch auf Basis von Strom, Umweltwärme und Flüssiggas nur geringfügig über das gesamte Betrachtungsgebiet stattfindet, weist Biomasse erhöhte Anteile speziell im Umfeld der Biogasanlagen bzw. der landwirtschaftlichen Betriebe der Gemeinde Glandorf auf. Wärmenetze sowie Steinkohle weisen nur punktuell einen Anteil am Endenergieverbrauch auf (vgl. Anhang). Die zum Teil weitläufige Verteilung von Energieträgern auf Baublockebene (z. B. Wärmenetz) resultiert aus der DSGVO-konformen aggregierten Auswertung auf Baublockebene.

1.3.2.6 Anzahl dezentraler Erzeuger

Zum Vorstehenden grenzt sich die nachfolgende Darstellung insofern ab, als sie – ebenfalls baublockbezogen und die Endenergieträger (formal die "Art der Wärmeerzeuger", was zum selben Ergebnis führt) in den Blick nehmend – nicht auf den Endenergieverbrauch, sondern auf die **Anzahl** der **dezentralen Wärmeerzeuger** abstellt. Die Ergebnisse ähneln sich insofern erwartungsgemäß. Es gibt aber zum einen eine gewisse Verzerrung, da hier die absoluten Anzahlen an Wärmeerzeugern und keine Anteile dargestellt werden. Somit stechen hier vor allem Baublöcke mit vielen Gebäuden, aber auch

solche mit vielen Etagenheizungen (meist eine Heizung je Etage statt einer Zentralheizung) heraus. Zum anderen sind nicht Strom oder Umweltwärme als Energieträger, sondern Nachtspeicherheizungen oder Wärmepumpen als Wärmeerzeuger dargestellt.

Abbildung 18: Anzahl Erdgas Wärmeerzeuger in Glandorf (auf Baublöcke bezogen)¹

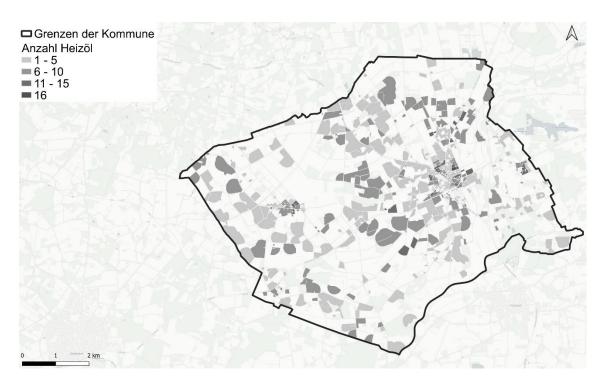


Abbildung 19: Anzahl Heizöl Wärmeerzeuger in Glandorf (auf Baublöcke bezogen)¹

Die Darstellungen der Wärmeerzeuger Biomasse, Wärmepumpen, Nachtspeicherheizungen, Übergabestationen und Flüssiggas sind im Anhang zu finden. Insgesamt lässt

sich ableiten, dass die beiden dominierenden Erzeugerarten die erdgas- und heizölbasierten Kessel sind, gefolgt von der Biomasse, jedoch in deutlich geringerer Anzahl.

1.3.3 Gebäudestruktur und Großverbraucher

1.3.3.1 Gebäudetypen¹⁵

Die folgende Darstellung zeigt die Verteilung der Gebäudetypen nach Anzahl der Gebäude sowie nach Endenergieverbrauch. Nach Anzahl überwiegen die Wohngebäude. Diese setzen sich wiederum aus Einfamilienhäusern (EFH), Reihenhäusern (RH), Mehrfamilienhäusern (MFH) und großen Mehrfamilienhäusern (GMFH) zusammen. Die Industrie hat lediglich einen Anteil von 0,1 % an der Anzahl der Gebäude, was drei Gebäudekomplexen entspricht. Bei der Betrachtung des Endenergieverbrauchs fällt allerdings auf, dass diese niedrige Anzahl an Industriegebäuden für 27 % des Endenergieverbrauchs verantwortlich ist. Daher ist der Anteil von Wohngebäuden am Endenergieverbrauch mit etwa 36 % deutlich niedriger im Vergleich zur Anzahl der Wohngebäude mit 75 % am Endenergieverbrauch.

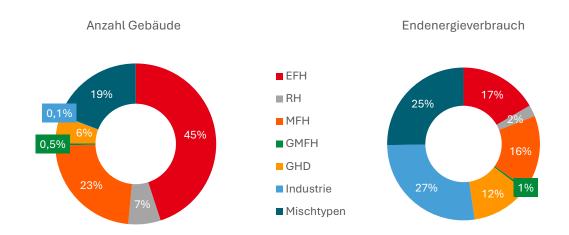


Abbildung 20: Verteilung der Gebäudetypen nach Anzahl (links) und nach Endenergieverbrauch (rechts) in Glandorf

_

¹⁵ EFH: Einfamilienhaus; RH: Reihenhaus; MFH: Mehrfamilienhaus; GMFH: Großes Mehrfamilienhaus; GHD: Gewerbe, Handel, Dienstleistungen

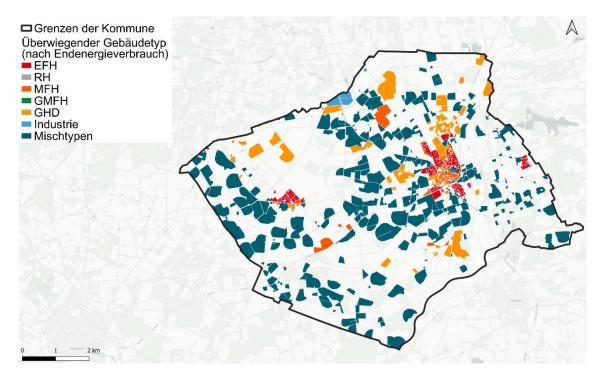


Abbildung 21: **Überwiegende** Gebäudetypen nach Endenergieverbrauch in Glandorf (auf Baublöcke bezogen)¹

Diese Darstellung der überwiegenden Gebäudetypen zeigt insbesondere die Lage von Gebäuden aus den Sektoren Gewerbe-Handel-Dienstleistungen (GHD) und von Industriebereichen im Verhältnis zu Wohnbereichen. Wichtig ist aber zu bemerken, dass sich aus dem überwiegenden Anteil eines Gebäudetyps nicht zwangsläufig eine starke Dominanz dieses Gebäudetyps begründen lässt. Beispielsweise zeigt der überwiegende Anteil roter Bereiche auch Baublöcke an, in denen es auch nennenswerte Anteile von Mehrfamilienhäusern gibt. Mischtypen, die vor allem außerhalb der Ortskerne zu finden sind (z. B. landwirtschaftliche Betriebe), sind definiert als Bereiche, in denen Gebäude mit gemeinsamer Wohn- und Gewerbenutzung überwiegen.

1.3.3.2 Gebäudealter

Für die Potenzialanalyse von höchster Relevanz – konkret für die Möglichkeiten der Energiebedarfsreduktion durch Sanierungsmaßnahmen (insbesondere Dämmmaßnahmen) – sind die überwiegenden **Altersstrukturen der Gebäude**. Insbesondere Wohnhäuser älterer Baujahre haben bekanntermaßen sehr niedrige Dämmstandards und entsprechend hohe Wärmeverluste, die das intensive und fortwährende Heizen unter Einsatz hoher Temperaturen erforderlich machen. Jedoch können einige der Gebäude bereits saniert sein, was in dieser Darstellung nicht enthalten ist. Dieser Punkt wird bei der Potenzialanalyse nochmals aufgegriffen.

Die Verteilung der Baualtersklassen nach Anzahl der Gebäude sowie nach Endenergieverbrauch ist in aggregierter Form in folgender Abbildung dargestellt. Dabei zeigt sich, dass ein sehr großer Anteil der Gebäude vor 1979 errichtet wurden. Auffällig ist, dass der Anteil der Gebäude ab 2009 am Endenergieverbrauch relativ zur Anzahl der

Gebäude entgegen den oben beschriebenen Erwartungen deutlich höher ist. Dies lässt darauf schließen, dass in dieser Baualtersklasse Großverbraucher vorliegen wie unter anderem ein großer Industriestandort.

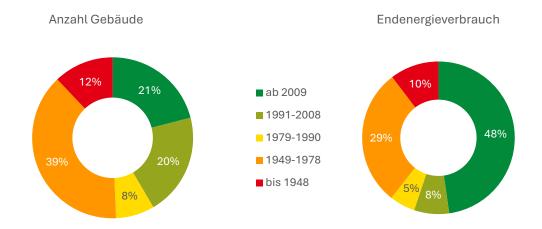


Abbildung 22: Verteilung der Baualtersklassen nach Anzahl (links) und nach Endenergieverbrauch (rechts) in Glandorf

Die folgende Karte zeigt die räumliche Verteilung der Baualtersklassen. Dabei ist zu betonen, dass es sich um die nach Endenergieverbrauch überwiegende Baualtersklasse handelt. Somit wird bei durchmischt bebauten Baublöcken nur das dominierende Baualter dargestellt. Besonders neuere Baualter weisen eher geringere spezifische Endenergieverbräuche auf und werden so oft durch ältere Baualtersklassen überwogen.

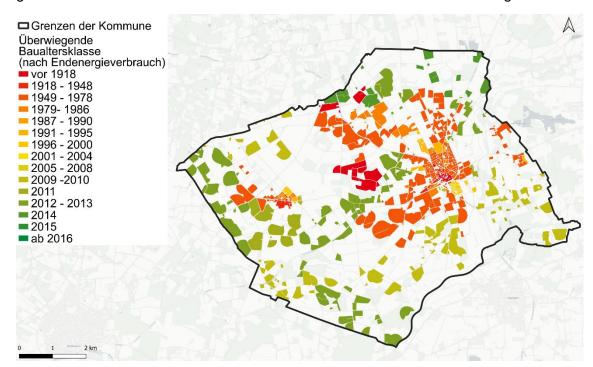


Abbildung 23: **Überwiegende** Baualtersklassen nach Endenergieverbrauch in Glandorf (auf Baublöcke bezogen)¹

Die Karte zeigt auf den ersten Blick, dass die Gebäude in Glandorf in den Bereichen der dichteren Besiedlung überwiegend aus frühen Baujahren stammen. Jüngere Gebäude (dunkelgrün), die innerhalb der letzten rund 20 Jahre errichtet wurden, finden sich vor allem in den ländlicheren Gebieten. Dabei handelt es sich um einzelne Wohnbauten und jüngere landwirtschaftliche Betriebe. Insgesamt ist daher von einem hohen Potenzial bei der Energiebedarfsreduktion auszugehen.

In Abbildung 24 ist zusätzlich die Aufteilung des Endenergieverbrauchs auf Energieeffizienzklassen dargestellt. Dabei fällt auf, dass die Energieeffizienzklassen A+ bis D etwa 52 % des Energieverbrauchs ausmachen. Der größte Anteil mit 40 % resultiert aus den Energieeffizienzklassen E und F. Die Energieeffizienzklassen G und H repräsentieren 8 % des Endenergieverbrauchs. Hier ist mit einem hohem Einsparpotenzial durch Sanierung zu rechnen.

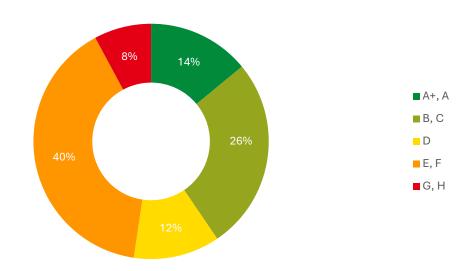


Abbildung 24: Auswertung des Endenergieverbrauchs nach Energieeffizienzklassen in Glandorf

1.3.3.3 Großverbraucher

Das Wärmeplanungsgesetz fordert auch die Darstellung:

- bestehender oder potenzieller Großverbraucher von Wärme oder Gas oder
- potenzielle Großverbraucher grüner Gase für die stoffliche Nutzung.

Die (potenziellen) Großverbraucher von Wärme und Gas definieren sich in diesem Wärmeplan in Anlehnung an das Energieeffizienzgesetz (EnEfG) und den Leitfaden vom

BMWK und BMWSB durch einen Verbrauch (Endenergie) von mehr als 2,5 GWh/a¹⁶. Als Datenbasis wurde hier der Wärmeatlas verwendet.

Zukünftige Großverbraucher grüner Gase sind nach dem WPG potenzielle Nutzer von grünem, blauem, orangem oder türkisem Wasserstoff sowie Biogas, Biomethan oder Grubengas zu stofflichen Zwecken. Hier sind keine bekannt.

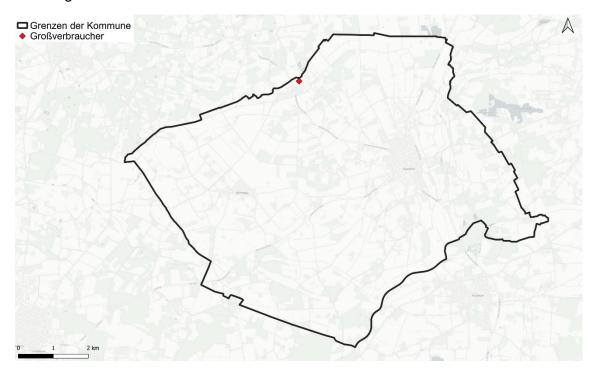


Abbildung 25: Großverbraucher in Glandorf¹

Es ist nach den vorstehenden Definitionen nur ein Großverbraucher auszuweisen. Dieser wurde im Rahmen der Akteursbeteiligung als wesentlicher Stakeholder beteiligt.

53 von 161

¹⁶ Große industrielle und gewerbliche Energieverbraucher haben erst zum 31.12.2024 Daten vorzulegen zu nutzbaren Abwärmepotenzialen, hier ist zu gegebener Zeit eine Überprüfung der Daten durchzuführen.

1.3.4 Infrastruktur und Erzeugung

Zur Ermittlung der nachfolgend dargestellten Daten wurden alle bekannten bzw. ermittelbaren Netzbetreiber kontaktiert.

1.3.4.1 Wärmenetze

In der folgenden Grafik sind zwei bestehende **Wärmenetze** in Glandorf dargestellt. Dabei ist darauf hinzuweisen, dass nur Wärmenetze, also Netze, die mehr als 16 Gebäude oder mehr als 100 Wohneinheiten versorgen, dargestellt werden müssen. Diese Abgrenzung erfolgt auf der Grundlage der Bundesförderung Energieeffiziente Wärmenetze (BEW). Gebäudenetze können aufgrund ihrer geringen Größe vernachlässigt werden.

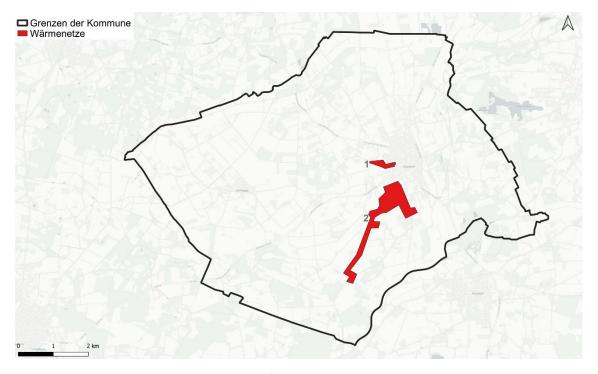


Abbildung 26: Wärmenetze in Glandorf¹

Das Nahwärmenetz 1 umfasst das Versorgungsgebiet einer Biogasanlage mit Wohngebäuden sowie über ein Satelliten-BHKW die Versorgung eines Hallenbades, zweier Schulen, zweier Sporthallen sowie einzelner Wohngebäude, das Nahwärmenetz 2 versorgt einzelne Höfe und Wohngebäude.

Nr.	Art (Wasser oder Dampf)	Jahr der Inbetriebnahme	Temperatur in °C	Gesamte Trassen- länge in km	Anzahl der Anschlüsse
1	Wasser	1996	75 - 80	1,5	11
2	Wasser	2024	90	4,8	19

Tabelle 1: Kenndaten vorhandener Wärmenetze

1.3.4.2 Gasnetze

Die Gasverteilnetze innerhalb der Gemarkungsgrenzen sind bekannt, die Lage wird gemäß WPG auf Baublockebene und nicht leitungsbezogen dargestellt:

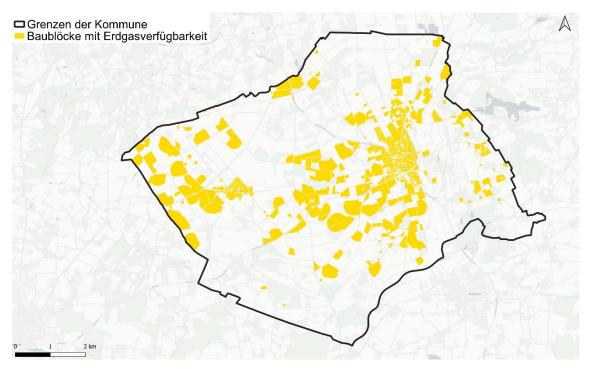


Abbildung 27: Darstellung der mit Erdgas versorgten Gebiete in Glandorf (auf Baublöcke bezogen) 1

Das Gasnetz hat eine Gesamtlänge von 87,7 km, der älteste Teil stammt aus 1978. Auf Basis der aktuell mit Gas versorgten Gebäude ergeben sich 813 Anschlüsse.

Die Gemeinde Glandorf ist in den Ortschaften sehr weitgehend mit dem Gasnetz erschlossen. Die Hälfte aller Heizungen wird mit Erdgas betrieben. Die übrigen Heizungen basieren zum Großteil auf Heizöl. Entsprechend hoch sind die Dekarbonisierungspotenziale. Perspektivisch wird ein Anstieg der Gaspreise für Endkundinnen und Endkunden (also inkl. steigender CO₂-Preise, Gasnetznutzungsentgelte etc.) erwartet. Dabei steigen die CO₂-Preise zunächst durch die im Bundesemissionshandelsgesetz angelegte Steigerung und ab 2027 durch den Wechsel in den europäischen Emissionshandel. Bei den Gasnetznutzungsentgelten wird aufgrund der durch Energieträgerwechsel und Energieeinsparungen erwartbar rückläufigen Gasmengen von einer starken Kostensteigerung ausgegangen. Dadurch geht eine entsprechend hohe Erwartungshaltung an alternative Versorgungslösungen einher. Diese richtet sich an Politik und Versorgungswirtschaft dahingehend, für die Bereitstellung dieser alternativen Lösungen in der Breite zu angemessenen Kosten zu sorgen.

1.3.4.3 Abwasserleitungen

Aus der Restwärme von Abwässern in der Kanalisation kann über die Nutzung Wärmepumpen Wärme für Wärmenetze bereitgestellt werden. Generell liegt die erforderliche Mindestnenngröße der Kanäle für eine Abwärmegewinnung bei mindestens DN 800. Ab dieser Nennweite kann eine Potenzialanalyse durchgeführt werden. In Glandorf weisen alle Kanalabschnitte eine Nennweite unterhalb von DN 800 auf, so dass das Potenzial hier nicht weiter untersucht wurde.

1.3.4.4 Wärmeerzeuger

Für eine erfolgreiche kommunale Wärmeplanung genügt es nicht, Energiebedarfe zu reduzieren und die verbrauchsseitigen Potenziale für Wärmenetze, etwa über Wärmeliniendichten, zu betrachten. Ohne geeignete Wärmequellen kann keine passende Lösung gefunden werden. Somit sind die **Standorte von bestehenden, bereits geplanten oder genehmigten Wärmeerzeugungsanlagen**, die in Wärmenetze einspeisen, von wesentlicher Bedeutung für die Analysen.

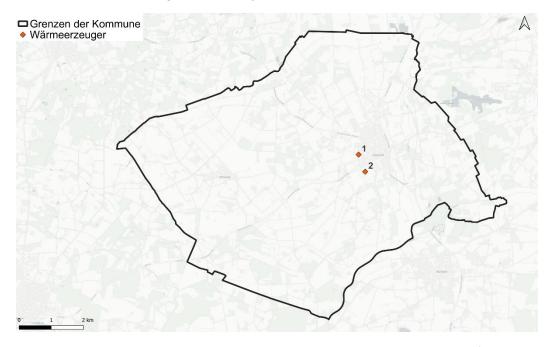


Abbildung 28: Wärmeerzeugungsanlage des Wärmenetzes in Glandorf¹

Nr.	Anlage	Thermische Nennleistung in kW	Jahr der Inbetrieb- nahme	Energieträger
1	BHKW / BGA	220	2010	Biogas
1	BHKW / Satellit	220	2010	Biogas
1	Kessel 1 / Hallenbad	455	2023	Erdgas
1	Kessel 2 / Hallenbad	455	2023	Erdgas
2	BHKW / BGA	1.100	2020	Biogas
2	BHKW / BGA	400	2020	Biogas
2	BHKW / BGA	160	2010	Biogas
2	BHKW / BGA	235	2010	Biogas
2	Hackschnitzelkessel 1	495	2024	Hackschnitzel
2	Hackschnitzelkessel 2	495	2024	Hackschnitzel

Tabelle 2: Daten der Erzeugungsanlagen der Wärmenetze in Glandorf (2024)

An einem Wärmeerzeugerstandort liegt hier ein Biogas BHKW im Westen des Ortskerns vor. Dieses wird durch einen Spitzenlastkessel am gleichen Standort ergänzt. Die Anlagen speisen ihre produzierte Wärmemenge in Höhe von 1,5 GWh/a in eine Wärmeleitung ein und versorgen damit ein Nahwärmenetz. Ein weiteres Biogas BHKW befindet sich süd-westlich des Ortskerns. Dieses speist ebenfalls in ein Wärmenetz ein (vgl. Abbildung 26).

1.3.4.5 Speicher

Wärmespeicher(standorte) sind wichtige Komponenten für die Wärmeerzeugung. Sie können im Einzelfall für die Flexibilität sorgen, die den Erzeugungsbetrieb vom prohibitiven in den technisch-wirtschaftlich darstellbaren Bereich verhelfen. Für Glandorf wurde ein Wärmespeicher mit 500 m³ an der Erzeugungsanlage 2 identifiziert.

Aus den verfügbaren Daten konnten im Untersuchungsgebiet keine Standorte für Gasspeicher ermittelt werden.

1.3.4.6 Wasserstoff

Es sind keine Wasserstofferzeugungsanlagen bekannt oder in Planung. Das Wasserstoffkernnetz wird nach derzeitiger Planung der FNB bis zum Stahlwerk Georgsmarienhütte geführt, eine Wasserstoffversorgung ist mittelfristig nicht absehbar.

1.4 Ergebnisse und weiteres Vorgehen

Im Rahmen der Bestandsanalyse wurde die Ausgangssituation der heutigen Wärmeversorgung in Glandorf untersucht und dokumentiert: Die Gebäudetypen mit ihrem jeweiligen Baualter und Sanierungszustand generieren einen konkreten Wärmebedarf, der mit unterschiedlichen Heiztechnologien bedient wird. Die Informationen sind in einem Wärmeatlas für Glandorf zusammengetragen worden.

In Glandorf wurden 1.740 beheizte Gebäude mit einem Endenergieverbrauch von 84 GWh bzw. einem Wärmebedarf von 67 GWh erfasst. Dabei ist der Endenergieverbrauch die eingesetzte Energie des jeweiligen Energieträgers, z. B. die kWh Gas oder Heizöl, wohingegen der Wärmebedarf die genutzte Wärme, d. h. die Raumwärme und das warme Wasser, ist. Die für die Beheizung erforderlichen 1.987 Wärmeerzeuger werden zu mehr als 85 % fossil (49 % Gas, 3 % Flüssiggas und 33 % Öl) betrieben und führen zu aktuellen jährlichen Treibhausgasemissionen von etwa 19.000 t CO₂-Aquivalenten. Eine Konzentration befindet sich in den Gebieten mit dichterer Bebauung sowie vereinzelten Ansammlungen von Gewerbe oder Industrie, wobei hier der Ortskern von Glandorf hervorzuheben ist.

Die Auswertungen dienen als Grundlage für die Potenzialanalyse, d. h. die Ermittlung der Potenziale für Reduktion der Wärmebedarfe sowie für erneuerbare Wärmequellen und insbesondere für unvermeidbare Abwärme.

Zur Vorbereitung der Potenzialanalyse erfolgte bereits eine erste Stakeholder-Konsultation in Form von Fragebögen, Workshops und bilateralen Gesprächen.

2 Potenzialanalyse

Aufgabenstellung: Was ist möglich?

Ziel: Verbrauch und Verschwendung erkennen, EE-Potenzial des Restbedarfs, konkret:

- · Kenntnis der Potenziale zur Senkung des Wärmebedarfs von Gebäuden (Wohn- und Nichtwohngebäude)
- Kenntnis der Potenziale zur Senkung des Prozesswärmebedarfs von Gewerbe und Industrie
- Potenziale zum Einsatz Erneuerbarer Wärmequellen (Umweltwärme, Geothermie, Solarthermie, Biomasse, ggf. EE-Stromerzeugung) und Nutzung von Abwärme

Ergebnis: Wärmeatlas mit erweiterten Informationen je Gebäude, konkret:

- Perspektivischer Referenz-Verbrauch unter Berücksichtigung äußerer Einflussgrößen
- absehbare Anpassungen im Wärmebedarf nach Durchführung möglicher und sinnvoller Effizienzmaßnahmen
- · Potentiale durch Erneuerbare und Abwärmenutzung
- Mögliche Quellen: i.d.R. Aufstellung eigener Szenarien mit Entwicklung von Einschätzungen zu möglichen Bedarfsanpassungen durch Effizienz sowie der möglichen Nutzung von Energieträgern und Erzeugungsbzw. Speicher-Technologien

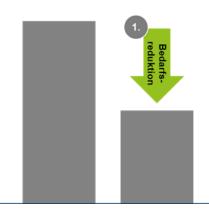
2.1 Aufgabenstellung

Die Potenzialanalyse untersucht zunächst, wo und wie der heutige Wärmebedarf durch geeignete Maßnahmen reduziert werden kann. Eine Reduzierung des Wärmebedarfs zahlt auf die Reduzierung der THG-Emissionen ein und erleichtert die Aufgabe zur Dekarbonisierung der Wärmeerzeugung. Es wird aber auch nach diesen Bedarfsreduktionen weiterhin die Notwendigkeit bestehen, Raumwärme, Wärme für die Warmwasserbereitung und Prozesswärme in großem Umfang bereitzustellen. Wie dies durch grüne und regenerative Technologien¹⁷, die im WPG definiert sind, möglich ist, wird im zweiten Teil der Potenzialanalyse beleuchtet. Die Potenzialanalyse zeigt dabei die theoretischen Potenziale auf, die um bestehende technische Restriktionen reduziert werden.

Wie kann der Wärmebedarf in der Kommune reduziert werden und wie kann der Restbedarf treibhausgasneutral, kosteneffizient und nachhaltig gedeckt werden?

2.2 Datenbasis

Für die Potenzialanalyse wurden diverse Datenquellen untersucht, die wesentlichen sind nachfolgend aufgeführt:


- Informationen der Gemeinde Glandorf
- Klimaschutz- und Energieagentur Niedersachsen (KEAN) Wärmebedarfskarte
- Informationen des Landkreises Osnabrück (z. B. Solarkataster)
- Daten der TEN
- Landesamt für Geoinformation und Landesvermessung Niedersachsen (LGLN)
- Ermittlungen und Berechnungen BET
- Informationen aus den Stakeholderprozessen

¹⁷ Definition: § 3 WPG Absatz 1 Nr. 15 "Wärme aus erneuerbaren Energien"

2.3 Analyse

2.3.1 Potenzial zur Senkung des Wärmebedarfs

Die beste Kilowattstunde ist im Sinne des Klimaschutzes stets diejenige, welche nicht benötigt wird. Demnach liegt offensichtlich das größte Potenzial zum Schutz des Klimas im Wärmesektor in der Vermeidung bzw. der Reduktion von Wärmebedarf. Die "Senkung des Wärmebedarfs im Gebäudewärmebereich" bedeutet im Kern die Dämmung von Gebäuden. Zudem wird es voraussichtlich auch zu ei-

ner Reduktion des Bedarfs durch den Klimawandel kommen: Durch im Mittel höhere Umgebungstemperaturen sinkt der Wärmebedarf im Durchschnitt. Weitere Effekte, die jedoch hier nicht betrachtet werden, sind z. B. verändertes Nutzerverhalten durch größeres Bewusstsein für den Energieverbrauch oder auch Veränderungen durch den demografischen Wandel. Zur Ermittlung des Reduktionspotenzials für den Wärmebedarf wird für den Bestand folgende Systematik angewendet:

Die im Wärmeatlas hinterlegten Gebäude werden anhand der aus dem KEAN-Wärmeatlas übernommenen Gebäudetypen und Baualtersklassen entsprechend der TABULA-Typologie eingeteilt. Die TABULA-Typologie¹⁸ basiert auf einem Forschungsprojekt, in dem der EU-weite Gebäudebestand betrachtet wurde und Typgebäude unterschiedlicher Größe (Einfamilienhaus, Reihenhaus, Mehrfamilienhaus, Großes Mehrfamilienhaus) und unterschiedlichen Alters (vor 1860 bis heutiger Neubau) kombiniert und analysiert wurden. Dabei wurde auch der Einfluss von Sanierung auf den Endenergieverbrauch untersucht. Da Nicht-Wohngebäude oder gemischt genutzte Gebäude in der Typologie nicht enthalten sind, werden diese vereinfacht wie Mehrfamilienhäuser behandelt. Dies ist eine geeignete Näherung für durchschnittliches Gewerbe, welches sich v. a. durch Raumwärme- und Warmwasserbedarf auszeichnet. Die Berechnung des spezifischen Wärmebedarfs nach Sanierung erfolgt gemäß der im Modernisierungspaket 2 der TABULA-Typologie hinterlegten Klassifizierung als "zukunftsweisend" je Typgebäude (entspricht in etwa einer Sanierung auf Energieeffizienzklasse B bis C) und wird für die Bestimmung des Sanierungspotenzials verwendet. Denkmalgeschützte Gebäude werden abhängig von der Art des Denkmalschutzes betrachtet.

 Bei Einzeldenkmalen, die sowohl innen als auch außen geschützt sind, werden lediglich 20 % der möglichen Sanierungstiefe angenommen.

¹⁸ https://www.iwu.de/forschung/gebaeudebestand/tabula/

• In Denkmalbereichen, bei denen lediglich die Außenhaut der Gebäude geschützt ist, wird eine Sanierungstiefe von 40 % der Vollsanierung angenommen.

Die nachfolgenden Grafiken zeigen als aggregierte Ergebnisse das theoretische Reduktionspotenzial unter Betrachtung der Gesamtzahl der Gebäude. Statt des Endenergieverbrauchs wird hier der Wärmebedarf verwendet, da die Wärmebedarfsreduktion unabhängig vom Energieträger bzw. des Heizungstyps ist.

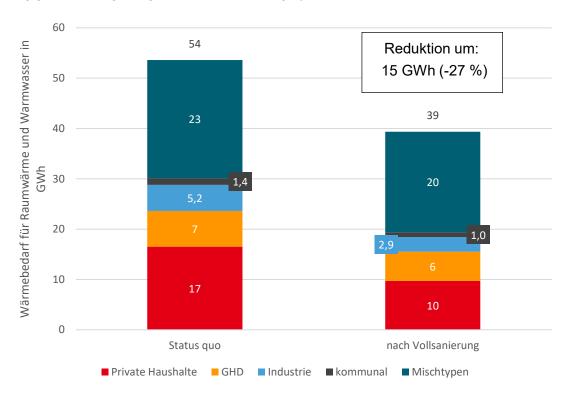


Abbildung 29: Wärmebedarf im Status quo und nach Nutzung des gesamten theoretischen Reduktionspotenzials in Glandorf

Das **theoretische** Potenzial zur **Reduktion des Wärmebedarfs** für Raumwärme und Warmwasser beträgt 15 GWh/a, entsprechend knapp 27 % des aktuellen Wärmebedarfs. Die sektorscharfe Auswertung zeigt, dass die höchsten relativen Reduktionen bei privaten Haushalten und Industrie möglich sind. Der niedrigste Wert von ca. 15 % tritt im Bereich der Mischtypen auf.

Für den Prozesswärmebedarf liegen von den betroffenen Unternehmen keine detaillierten Erkenntnisse zum Rückgang des Energieverbrauchs, zum Sanierungspotenzial oder zur Umstellung auf andere Energieträger, z. B. Strom, vor. Daher ist keine detaillierte und valide Beantwortung der Frage der Reduktionspotenziale im Prozesswärmebedarf möglich. Für die weiteren Betrachtungen wird daher eine pauschale Annahme für die Reduktion von 10 % des heutigen Bedarfs bis 2045 angenommen. Grundlage für diese Annahme ist, dass technischer Fortschritt und Systemwechsel in den Produktionsprozessen unterstellt werden. Diese Werte sollten im Rahmen der spätestens fünfjährigen Überprüfung der kWP plausibilisiert werden. Mit der Umsetzung des EnEfG dürfte es zukünftig eine leicht verbesserte Datengrundlage geben.

Die kartografische Darstellung in der folgenden Abbildung 30 zeigt die lokale Verortung der Sanierungspotenziale. Die Realisierung dieses theoretischen Potenzials entspräche bei einer Umsetzung bis zum Jahr 2045 einer theoretischen Sanierungsquote von 5 % jährlich bezogen auf alle Gebäude. Diese Quote liegt weit oberhalb des heutigen Wertes von jährlich ca. 1 % und auch deutlich höher als gängige Annahmen für zukünftig steigende Sanierungsquoten. Die Sanierungsquote wird in einem realistischen Zielszenario mit 1,7 % angesetzt.

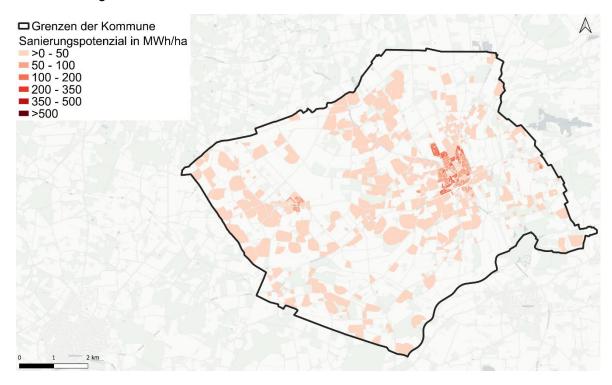
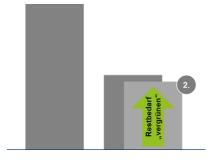



Abbildung 30: Sanierungspotenzial in Glandorf¹

2.3.2 Potenzial zur Deckung des Restbedarfs durch "grüne Wärme" und Abwärme

2.3.2.1 Einleitung

Grundlage für die Ermittlung der Potenziale bilden die Richtlinien und vorgegebenen Mindestinhalte der kommunalen Wärmeplanung. Zusätzlich gibt die folgende Abbildung 31 einen Überblick über grundsätzlich mögliche Wärmequellen zur Deckung des Restbedarfs durch "grüne Wärme" und Abwärme. Die Wärmepotenziale werden hier in vier übergeordnete Energieträger eingeteilt:

- Biomasse
- Umweltwärme
- Abwärme
- CO₂-arme Sekundärenergieträger

Abbildung 31: Erneuerbare Wärmepotenziale im "Grüne-Wärme-Rad" von BET

Im Folgenden werden die für Glandorf relevanten Potenziale detaillierter untersucht.

2.3.2.2 Solarthermie

Solarthermie ist als **fast emissionsfreier Energieträger** eine gute Option zur Dekarbonisierung der im Sommer anfallenden Wärmebedarfe (insbesondere für den Warmwasserbedarf). Im Betrieb fallen Emissionen ausschließlich für Pumpstrom an, solange dieser nicht vollständig erneuerbar ist. Der Energieträger verursacht selbst keine Betriebskosten und steht – bei ausreichend vorhandener Fläche – unbegrenzt zur Verfügung. Dem gegenüber steht der **hohe Flächenbedarf**, der vor allem im innerstädtischen Bereich in der Nähe von Fernwärmenetzen nur in Ausnahmefällen zur Verfügung steht. Erschwerend kommt hinzu, dass eine **starke saisonale Abhängigkeit** besteht, die konträr zum Wärmebedarf verläuft (vgl. Abbildung 32). Vor diesem Hintergrund kann die Solarthermie nur ein Teilelement bei der Dekarbonisierung sein. Bei Solarthermie für Wärmenetze kann typischerweise mit einem Kurzzeitspeicher ein Deckungsgrad von 5-10 % erreicht werden. Bei Aufdach-Solarthermie kann ca. 50 % des Warmwasserbedarfs über Solarthermie gedeckt werden. Es wurde eine Potenzialanalyse für die derzeit relevanten Technologien (Dachflächen- und Freiflächen-Solarthermie) vorgenommen, um geeignete Flächen zu bewerten.

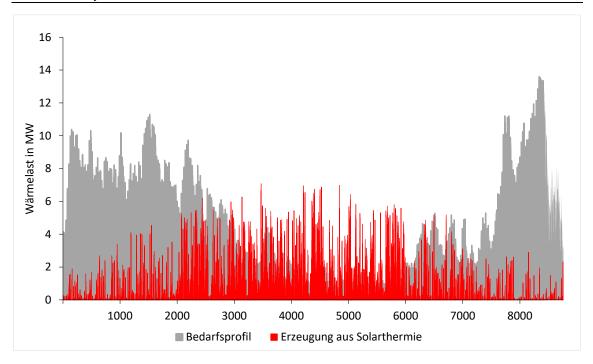


Abbildung 32: Exemplarisches Erzeugungs- bzw. Bedarfsprofil für Wärmenetz mit Solarthermie im Jahresverlauf (8.760 Stunden)

2.3.2.2.1 Dachflächen-Solarthermie

Für die Solarthermienutzung wird zunächst das dezentrale Potenzial zur Erzeugung von solarer Wärme auf Dachflächen betrachtet. Als Datengrundlage dient das Solarkataster des Landkreises Osnabrück auf Gebäudeebene. Das Solardachkataster weist die auf allen geeigneten Dachseiten des Gebäudes installierbare Leistung für PV in kWp aus und wird auch hier für die Bewertung der potenziellen thermischen Leistung herangezogen. Als weitere Datengrundlage dient der adressscharfe Wärmeatlas mit dem Wärmesowie Warmwasserbedarf je Adresse.

Die Auswertung erfolgt, indem die installierbare Leistung auf Gebäudeebene aggregiert wird. Die möglichen zu erzeugenden Solarthermie-Energiemengen werden über eine Aggregation der installierbaren PV-Leistung auf Adressebene und einen Umrechnungsfaktor für PV zu Solarthermie bestimmt. Um die Plausibilität der Ergebnisse zu erhöhen, wird das Solarthermiepotenzial auf 50 % des Warmwasserbedarfs des adressscharfen Wärmeatlas gedeckelt.

Als Ergebnis wird ein nutzbares Potenzial von in Summe 1,7 GWh/a ermittelt. Dabei wird durch die oben genannte Deckelung das Potenzial sehr stark beschränkt. Ohne die Deckelung liegt das theoretische Potenzial bei 294 GWh/a. Der große Unterschied zwischen dem gedeckelten und dem ungedeckelten Potenzial ist unter anderem auf die vergleichsweise großen Dachflächen von Nichtwohngebäuden bei gleichzeitig niedrigen Warmwasserbedarfen zurückzuführen.

Zusätzlich ist bei der Nutzung der Dachflächen für Solarthermie die Nutzungskonkurrenz zu PV-Anlagen zu berücksichtigen. PV-Anlagen in Kombination mit Wärmepumpen

stellen i. d. R. die kostengünstigere Versorgungsoption dar.

Die Kombination aus PV und Solarthermie (PVT-Kollektoren) kommen bisher nur in Pilotprojekten zum Einsatz und werden daher hier nicht näher bewertet.

Die nachfolgende Grafik zeigt die baublockbezogene kartografische Darstellung in MWh/ha.

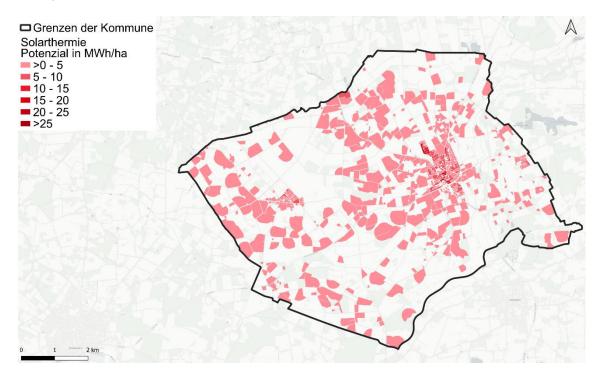


Abbildung 33: Potenzial Dachflächen-Solarthermie in Glandorf¹

2.3.2.2.2 Freiflächen-Solarthermie und Saisonalspeicher

Grundsätzlich ergab eine GIS-Analyse der Flächen anhand ihrer Nutzungsart im Gemeindegebiet von Glandorf viele Flächen, die theoretisch für eine solarthermische Freiflächen-Anlage in Frage kommen könnten. Dabei wurden die Typen landwirtschaftliche Flächen und ungenutzte Flächen in Betracht gezogen. Diese liegen jedoch meist in größerer Entfernung zu bebauten und für Wärmenetze geeigneten Gebieten. Für die Potenzialanalyse wurde angenommen, dass Gebiete für den Aufbau eines Wärmenetzes in Frage kommen, wenn sie in maximal 500 Metern Entfernung zu Straßenzügen mit einer Wärmeliniendichte von mindestens 3.000 kWh/m und einem Wärmebedarf von mindestens 300 MWh/a liegen. Zusätzlich wurde angenommen, dass eine geeignete Freifläche mindestens 1 Hektar (entspricht 10.000 m²) groß sein sollte. Um geometrisch ungeeignete Flächen auszuschließen, wird angenommen, dass zum Aufbau einer Freiflächenanlage mindestens ein Quadrat mit einer Seitenlänge von 50 m in die Fläche hineinpassen muss. Des Weiteren wurden Flächen in Naturschutzgebieten und FFH-Gebieten ausgeschlossen (vgl. Anhang).

Auf dieser Basis wurden in einer GIS-Auswertung 511 ha (5,11 Mio. m²) an Flächen identifiziert, dargestellt in Abbildung 34. Unter der Annahme, dass hiervon 20 % tatsächlich genutzt werden können, ergibt sich ein Flächenpotenzial von 102 ha (1,02 Mio. m²)

und daraus mit dem spezifischen solaren Ertrag je Kollektorfläche (Röhrenkollektor)¹⁹ für Glandorf ein theoretisches Wärmepotenzial von 48 MW thermischer Leistung bzw. 32 GWh/a nutzbarer solarer Wärme.

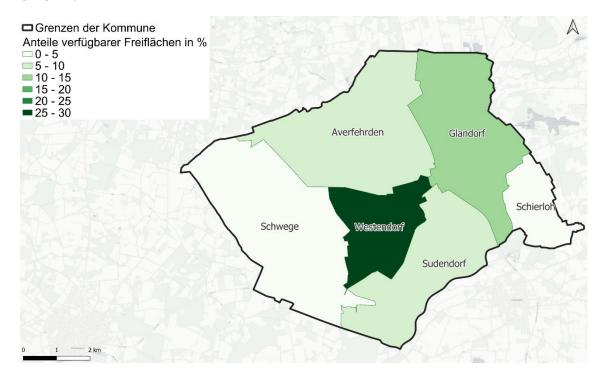


Abbildung 34: Potenzielle Freiflächen für die Wärmeerzeugung in Glandorf¹

Wieviel dieses Flächenpotenzials davon unter Berücksichtigung des sommerlichen Wärmebedarfs eines potenziell mit einer Solarthermieanlage versorgten Gebiets tatsächlich sinnvoll genutzt werden kann, muss in einem nachfolgenden Arbeitsschritt detailliert untersucht werden. Bislang sind im Flächennutzungsplan keine Flächen für Solarthermie-Freiflächenanalagen gesichert. Im weiteren Prüfverlauf potenziell geeigneter Flächen müssten dann insbesondere die Umweltaspekte, aber auch Aspekte der Stadtentwicklung und -planung, im Detail geprüft und mit dem überragenden öffentlichen Interesse am Ausbau der erneuerbaren Energien abgewogen werden.

Unter der Annahme einer Versorgung aller Gebiete mit einer Wärmeliniendichte > 3.000 kWh/m (Wärmebedarf von 24 GWh) und einer 10-prozentigen Deckung dieses Bedarfs aus zentraler Solarthermie (üblicher Erfahrungswert) erscheint maximal eine Leistung von 3,6 MW sowie eine Erzeugungsmenge von 2,4 GWh/a und damit etwa 1,5 % des oben ermittelten Flächenpotenzials sinnvoll. Hierbei wurde bereits vorausgesetzt, dass Kurzzeitwärmespeicher eingesetzt werden, um solare Wärme von den Mittags- in die Abend- und Morgenstunden zu verlagern oder ein bis zwei Tage ohne Sonneneinstrahlung überbrücken zu können.

Um Solarthermie nicht nur zur Warmwasserbereitung, sondern auch für größere Anteile an der Gebäudeheizung einsetzen zu können, sind saisonale Wärmespeicher

_

¹⁹ Datenbasis: AGFW-Leitfaden Solarthermie, 2021

erforderlich. Diese speichern die überschüssige Wärme im Sommer ein, um sie in der kalten Jahreszeit zu nutzen. Diese Technologie benötigt jedoch weitere große Flächen. Aufgrund ihrer hohen Kosten ist sie derzeit i. d. R. nicht wirtschaftlich umsetzbar. Außerdem arbeiten Langzeitwärmespeicher erheblich effizienter, wenn sie in Kombination mit niedrigen Netztemperaturen betrieben werden, was wiederum gut wärmegedämmte Gebäude, z. B. im Neubaubereich, zur Voraussetzung hat. Aufgrund der Wärmeverluste sinkt die Speichertemperatur im Zeitverlauf. Eine effiziente Lösung ist die Kombination mit einer Wärmepumpe, um die Speichertemperaturen relativ niedrig halten und die Verluste verringern zu können.

Bei einem Einsatz von saisonalen Wärmespeichern wird zusätzliche Fläche für den Speicher benötigt, wodurch die pro Fläche erzeugbare Wärmemenge sinkt.

Mit saisonalen Wärmespeichern kann i. d. R. ein erheblich höherer Anteil des grundsätzlich meist großen solarthermischen Wärmepotenzials auch ganzjährig genutzt werden.

Der zusätzliche Flächenbedarf für die saisonale Wärmespeicherung beträgt ca. 30 % der Kollektorfläche.

2.3.2.3 Geothermie

Geothermie ist die Nutzung der natürlichen Wärme aus dem Erdinneren, die abhängig vom Temperaturniveau der Wärme entweder direkt genutzt werden kann oder mithilfe von Wärmepumpen auf ein höheres Temperaturniveau angehoben wird. Abhängig von der Bohrtiefe wird i. d. R. nach oberflächennaher Geothermie (bis ca. 400 Meter) und mitteltiefer und tiefer Geothermie (mehr als 400 und bis zu 5.000 Metern Tiefe) unterschieden.

2.3.2.3.1 Oberflächennahe Geothermie

Bei der oberflächennahen Geothermie wird die relativ konstante Temperatur des Bodens oder des Grundwassers in geringer Tiefe (bis ca. 400 Meter) genutzt. Die Temperaturen liegen meist zwischen 10 und 20 °C, so dass immer eine Wärmepumpe erforderlich ist, um das für Heizzwecke notwendige Temperaturniveau (i. d. R. mindestens 50 bis 70 °C im Vorlauf) zu erreichen. Vorteil ist die ganzjährig weitgehend konstante Temperatur. Dadurch werden deutlich höhere Jahresarbeitszahlen (JAZ) der Wärmepumpe erreicht als bei außentemperaturabhängigen Wärmequellen wie Luft oder Flusswasser.

Erdsonden-Wärmepumpen

Die Wärme wird i. d. R. mit Erdwärmesonden gewonnen. Diese bestehen aus vertikalen Bohrungen, in die Rohre eingeführt werden. Ein geschlossener Wasserkreislauf nimmt die Wärme aus dem Boden auf, um sie der Wärmepumpe zuzuführen. Daneben sind auch Erdkollektoren einsetzbar, die oberflächennah bis nur wenige Meter tief realisiert werden. Der Flächenbedarf ist jedoch noch deutlich höher als bei Erdsonden und wird daher an dieser Stelle nicht vertiefend betrachtet.

Eine einzelne Erdsonde liefert nur ca. 5 kW Heizwärme (mit unten genannten Annahmen) und kann somit i. d. R. nur ein einzelnes Haus versorgen. Für die Einspeisung in ein Wärmenetz ist ein Feld von vielen Sonden erforderlich. Diese sollten einen Abstand von mindestens 10 Metern haben, um eine negative gegenseitige Beeinflussung zu vermeiden. Somit besteht ein **hoher Flächenbedarf**. In Bereichen mit dichter Bebauung sind Erdsonden-Wärmepumpen daher nur eingeschränkt einsetzbar. Ein theoretisches Flächenpotenzial besteht weiterhin bei größeren Sportanlagen, wenn diese saniert werden. Dieser Aspekt ist bei anstehenden Sanierungen zu berücksichtigen.

Zentrale Nutzung von oberflächennaher Geothermie:

Für die Potenzialabschätzung **zentraler Nutzung oberflächennaher Geothermie** wurden folgende Annahmen getroffen:

- Bohrtiefe 100 Meter mit einer mittleren Temperatur von 11,5 °C
- Jahresarbeitszahl der Wärmepumpe bei 70 °C mittlerer Vorlauftemperatur: 2,93
- 2.000 Vollbenutzungsstunden
- Mittlere Wärmeleitfähigkeit: 2,1 W/mK

Unter der Annahme, dass für die Einspeisung in ein Wärmenetz mit der Ausnahme von Trinkwassergewinnungsgebieten dieselben Flächen genutzt werden können, die auch für die Solarthermie nutzbar sind, ergibt sich ein Potenzial von 36 MW bzw. 72 GWh/a. Trinkwassergewinnungsgebiete liegen im Gebiet der Kommune Glandorf nicht vor, vgl. Anhang 6.3. Ähnlich wie bei der Solarthermie kann nur der Teil des Potenzials genutzt werden, der sich in der Nähe von bewohnten Gebieten mit hoher Wärmeliniendichte und damit in der Nähe von potenziellen Wärmenetzten befindet.

Wird die Bohrtiefe auf 200 m erweitert, erhöht sich das Potenzial auf 70 MW bzw. 140 GWh/a. Bei steigender Bohrtiefe stehen den verbesserten Betriebsbedingungen für die Wärmepumpe (höhere mittlere Bodentemperatur und größerer Wärmeentzug) die höheren Bohrkosten gegenüber. Zusätzlich ist zu beachten, dass für die Bohrungen ab einer Tiefe von 100 m in der Regel eine bergbauliche Erlaubnis einzuholen ist.

Im Rahmen der konkreten Umsetzung sollte geprüft werden inwieweit eine Doppelnutzung der verfügbaren Freiflächen (z. B. Solarthermie und Erdwärmesonden) möglich ist.

Dezentrale Nutzung von oberflächennaher Geothermie:

Für die Potenzialabschätzung dezentraler Nutzung²⁰ oberflächennaher Geothermie wurden folgende Annahmen getroffen:

- Bohrtiefe 100 Meter mit einer mittleren Temperatur von 11,5 °C
- Jahresarbeitszahl der Wärmepumpe: 3,5
- 2.000 Vollbenutzungsstunden
- Mittlere Wärmeleitfähigkeit: 2,1 W/mK

²⁰ Von dezentraler Nutzung wird im Allgemeinen bei Wärmeversorgungslösungen von Einzelgebäuden gesprochen.

Unter der Annahme, dass der Wärmebedarf technisch mit oberflächennaher Geothermie versorgbar ist, ergibt sich ein Potenzial von 26,5 MW bzw. 53 GWh/a, was 80,3 % des Wärmebedarfs in Glandorf entspricht. Die kartografische Darstellung der Potenziale ist in der nachfolgenden Abbildung 35 zu sehen.

Insbesondere in den Bereichen mit hohen spezifischen Wärmedichten zeigen sich auch hohe Potenziale für oberflächennahe Geothermie. Dies gilt besonders dort, wo es eine gute gebäudenahe Flächenverfügbarkeit gibt.

Allerdings sind die Kosten für eine oberflächennahe Geothermieanlage insbesondere aufgrund der Bohrkosten relativ zu anderen Heizungstechnologien hoch. Daher ist die Installation dezentraler Sole-Wärmepumpen im Vergleich zu anderen Heizungstechnologien i. d. R. nicht wirtschaftlich (vgl. Kap. 3.3.1 Wärmevollkostenrechnung der Heizungstechnologien). Die Errichtung von Erdwärmesonden-Anlagen muss i. d. R. durch die zuständigen Behörden geprüft und genehmigt werden. Die kartografische Darstellung der Potenziale ist in der nachfolgenden Abbildung 35 zu sehen.

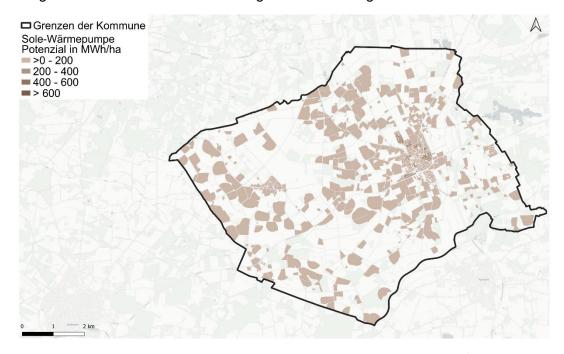


Abbildung 35: Potenzial dezentraler Sole-Wärmepumpen in Glandorf¹

2.3.2.3.2 Tiefe und mitteltiefe Geothermie

Die tiefe und mitteltiefe Geothermie umfasst Systeme, bei denen die geothermische Energie über Tiefbohrungen mit Tiefen von 400 bis zu 5.000 Metern erschlossen wird und deren Energie entweder direkt (d. h. ohne Niveauanhebung der Temperatur) oder unter Einsatz von Wärmepumpen genutzt werden kann. Das Wärmepotenzial bei Fündigkeit ist i. d. R. sehr groß und ganzjährig mit gleichmäßiger Temperatur verfügbar. Die Erschließung ist jedoch sehr aufwändig. Die Angaben zu theoretischen Potenzialen bedürfen einer Überprüfung vor Ort und liefern erste Hinweise zur Eignung aufgrund der örtlichen geologischen Verhältnisse. Insbesondere kann das Potenzial erst nach Durchführung von Tiefbohrungen genauer bestimmt werden. Diese Bohrungen kosten bereits

mehrere Millionen Euro. Neben dem erprobten Verfahren der hydrothermalen Geothermie, bei der eine Bohrung bis zu einer wasserleitenden Erdschicht abgeteuft wird, gibt es als Alternativen das HDR- sowie das Eavor-Loop-Verfahren um tiefe geothermische Quellen zu erschließen.

Das HDR-Verfahren (petrothermale Geothermie) wurde bisher nur in wenigen Pilotprojekten realisiert und kann heute noch nicht als ausgereifte Technik betrachtet werden. Bei petrothermalen Verfahren wird durch gezielte, hydraulische Stimulation im kristallinen Grundgebirge eine Wasserdurchlässigkeit erzeugt. Dabei besteht ein Risiko für die Auslösung seismischer Erschütterungen. Es laufen Forschungsprojekte zur Reduzierung dieses seismischen Risikos.

Das neue, von der Firma Eavor entwickeltes Verfahren ("Eavor-Loop") arbeitet mit einem geschlossenen Wasserkreislauf. Hierfür werden zwei Bohrungen bis auf eine Ablenktiefe niedergebracht. Von dort aus werden mehrere parallel verlaufende Schleifen über Förder- und Injektionsbohrung angebunden. Spalten und Klüfte des Umgebungsgesteins werden dauerhaft verschlossen, sodass ein geschlossenes System geschaffen wird. Das Verfahren ist jedoch bis heute nur in kleinen Maßstäben getestet und befindet sich noch im Entwicklungsstadium.

Nach Informationen des Niedersächsischen Geothermiedienstes (NGD) des Landesamtes für Bergbau, Energie und Geologie (LBEG) befinden sich im Untergrund von Glandorf keine explorationsrelevanten Gesteinsformationen für hydrothermale Geothermie. Das HDR- und Eavor-Verfahren wird für die Potenzialanalyse nicht weiter betrachtet, da beide Verfahren noch nicht ausgereift sind. Somit können mit dem derzeitigen Erkenntnisstand keine Potenziale für Tiefengeothermie in Glandorf ausgewiesen werden. Zudem wird die Erschließung dieses Wärmepotenzials aus wirtschaftlichen Gründen nicht von der Kommune angestrebt. Im Zuge des technologischen Fortschritts wird empfohlen, die Rahmenbedingungen fortlaufend zu prüfen, spätestens alle 5 Jahre im Rahmen der Fortschreibung des kommunalen Wärmeplans.

2.3.2.4 Biomasse

Biomasse steht grundsätzlich in verschiedenen Formen zur Verfügung. Feste Biomasse wie Waldrestholz, Altholz oder auch Energiehölzer können in Kesseln verbrannt werden, um Wärme zu erzeugen. Gase aus Biomasse wie Biogas und Biomethan werden meist in KWK-Anlagen zur Wärme- und Strombereitstellung genutzt. In beiden Fällen wird, beispielsweise in Abgrenzung zu Solarthermie, Wärme auf einem hohen Temperaturniveau zur Verfügung gestellt. Zudem kann Biomasse gelagert werden und bedarfsweise für die Wärmebereitstellung genutzt werden. Diese Eigenschaften machen Biomasse zu einem attraktiven Energieträger. Gleichzeitig ist das Potenzial trotz der regenerativen Eigenschaft regional begrenzt, da die Wälder Regenerationszeiten benötigen oder auch die landwirtschaftlichen Flächen nur in begrenztem Umfang zur Verfügung stehen. Dabei ist darauf zu achten, dass die biologische Masse nur in dem Maße dem Ökosystem entnommen wird, wie es für Fauna und Flora verträglich ist.

Das Potenzial für feste Biomasse wurde bereits im Klimaschutzkonzept der Gemeinde Glandorf untersucht. Als Ergebnis wurde eine potenziell erzeugbare Wärmemenge von 0,87 GWh/a aus Waldpflegehölzern ausgewiesen. Diese Wärmemenge umfasst auch das bereits genutzte Potenzial. Zum genutzten Potenzial stehen keine näheren Informationen zur Verfügung. Die Auswertung des ungenutzten jährlichen Zuwachses in den privaten Waldgebieten der Kommune ergeben ein zusätzliches Potenzial von etwa 2,76 GWh/a.

Bei der dezentralen Nutzung²¹ von Biomasse wird der Einsatz insbesondere von Holz-Pellets einen nennenswerten Anteil darstellen (vgl. Kapitel 3.3.3), wobei Holzpellets auch überregional beschafft werden können. Somit besteht keine Abhängigkeit von den lokalen Potenzialen. Allerdings ist in diesem Falle die Treibhausgaswirkung bei einer überregionalen Beschaffung von Pellets zu berücksichtigen. Insbesondere als Ersatz für Heizöl- oder Flüssiggasanlagen wird hier ein Zuwachs aus wirtschaftlicher Sicht der Endkundinnen und Endkunden als realistisch gesehen. Die kommunale Wärmeplanung schreibt keine konkrete Heizungstechnologie vor, sondern überlässt die Wahl darüber den Endkundinnen und Endkunden.

Das Potenzial für gasförmige Biomasse wird ebenfalls im Klimaschutzkonzept der Gemeinde Glandorf ausgewiesen. Aus Wirtschaftsdünger (z. B. Gülle) und Substraten von Ackerflächen können insgesamt ca. 11 Mio. m³ Biogas gewonnen werden. Biogas wird i. d. R. in BHKWs verbrannt, die Wärme und Strom gleichzeitig zur Verfügung stellen. Nach Aussage des Klimaschutzkonzepts lässt sich aus der Biogasmenge thermische Energie in Höhe von 28 GWh gewinnen. Diese umfasst auch die bereits erschlossenen Potenziale und resultiert u. a. aus den drei Biogas-Anlagen "S. Athenia Bioenergie" (bis zu 4 GWh/a), "Bioline" (bis zu 5 GWh/a) und "Schulze-Langhorst" (bis zu 2 GWh/a). Diese Anlagen könnten ihre Kapazitäten nach eigener Aussage noch erheblich bis zum dreifachen der jetzigen Kapazität erweitern. Eine Anlagenerweiterung steht aber insbesondere unter dem Vorbehalt der Genehmigungsfähigkeit sowie der wirtschaftlichen Erschließung weiterer Wärmesenken.

2.3.2.5 Umweltwärme

2.3.2.5.1 Luft

Eine Luft-Wärmepumpe nutzt die Umgebungsluft als Wärmequelle. Da Luft überall verfügbar ist, können Luft-Wärmepumpen unabhängig von anderen Wärmequellen wie Geothermie, Fluss, Abwärme fast überall errichtet werden. Sie sind i. d. R. einfacher und mit geringeren Investitionskosten zu installieren als andere Arten von Wärmepumpen, da sie z. B. keine Erdbohrungen für den Zugang zu geothermischen Ressourcen erfordern. Der Flächenbedarf für das Außengerät ist im Vergleich zu Erdsonden-Wärmepumpen oder Solarthermie sehr gering. Luft-Wärmepumpen können sowohl für die

²¹ Von dezentraler Nutzung wird im Allgemeinen bei Wärmeversorgungslösungen von Einzelgebäuden gesprochen.

Beheizung einzelner Gebäude eingesetzt werden als auch als Großanlagen in Fern- und Nahwärmenetzen.

Luft-Wärmepumpen können in unseren Breiten hohe Jahresarbeitszahlen erreichen, insbesondere wenn die geforderten Vorlauftemperaturen für die dezentrale Heizung oder für ein Wärmenetz niedrig sind. Effizienz senkend wirkt der Effekt, dass der Wärmeertrag von der Außentemperatur abhängt und daher im Winter am niedrigsten und im Sommer am höchsten ist. Die Wärmebedarfskurve ist genau gegenläufig. I. d. R. sind Wärmepumpensystem monovalent zu betreiben. Gebäude mit einem niedrigen Effizienzstandard, die auf hohe Vorlauftemperatur ausgelegt sind können ggf. bei ungünstigen Witterungsbedingungen nicht mehr monovalent versorgt werden. Gerade bei extremen Minustemperaturen nutzt die Wärmepumpe kaum noch Umweltwärme, so dass dann entweder der COP-sinkt oder ergänzend der Einsatz zusätzlicher Wärmeerzeuger, z. B. Stromdirektheizungen, sinnvoll sein kann.

Zentrale Erzeugung

Aufgrund des geringen Flächenbedarfs und der quasi unendlich verfügbaren Wärmequelle Luft ist das im Prinzip unendliche theoretische Potenzial nur durch individuelle lokale Restriktionen begrenzt, z. B. begrenzter Platz für die Aufstellung der Anlagen oder hohe Lärmschutzanforderungen. Diese Einschränkungen sind allerdings gerade im dichter bebauten Raum relevant. Bei einem Einsatz von Luft-Wärmepumpen für Wärmenetze ist daher abhängig von der Lage der potenziellen Wärmenetze eine detaillierte Flächenanalyse notwendig oder alternativ die Berücksichtigung von zusätzlichen Sekundärmaßnahmen zum Schallschutz. Für die Ausweisung von Potenzialen für zentrale Großluftwärmepumpen bedarf es somit einer genaueren Planung der zukünftigen Wärmenetze in Glandorf, so dass die Potenziale hier nicht näher quantifiziert werden können.

Dezentrale Erzeugung

Zur Ermittlung des Potenzials der **dezentralen** Nutzung von Umweltwärme aus der Luft wurde folgendes Vorgehen gewählt:

In einer GIS-Analyse wird die Umgebung der Gebäude untersucht. Mögliche Restriktionen sind vor allem mögliche Aufstellorte für die Außeneinheit, die auch die Abstandsbeschränkungen und Lärmemissions-Grenzwerte einhalten (In Niedersachsen gibt es zwar keinen Mindestabstand, hier wird jedoch auch 3 m Abstand zur Grundstücksgrenze angesetzt, um Grenzwerte der Geräuschemissionen und die Rücksicht auf den Nachbarn zu antizipieren).

Im Weiteren erfolgt eine statistische Analyse, wo wahrscheinlich ein Außengerät aufstellbar ist. Dies ermöglicht keine verlässliche Aussage je Gebäude, da die genauen Bedingungen vor Ort nicht bekannt sind, aber auf viele Gebäude aggregiert (Straßenzug oder Baublock), sind valide Aussagen möglich.

Als aggregiertes Ergebnis zeigt sich ein Potenzial in Summe von 23 GWh/a. Dies entspricht etwa 35 % des gesamten Wärmebedarfs im Status quo.

Die nachfolgende Grafik zeigt die baublockbezogene Darstellung in MWh/ha.

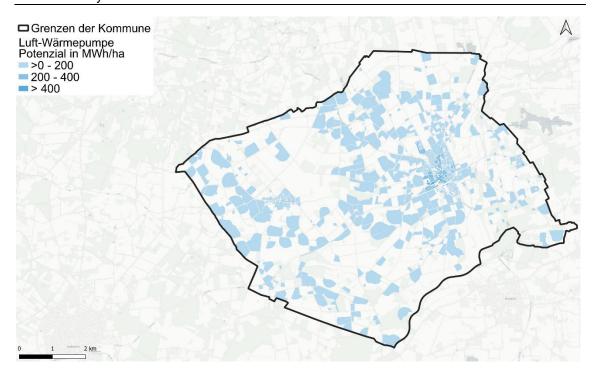


Abbildung 36: Potenzial Luft-Wärmepumpe in Glandorf¹

Dabei zeigt sich ein erhöhtes Potenzial v. a. dort, wo auch der Wärmebedarf hoch ist und die Bebauung dein Einbau einer Wärmepumpe zulässt.

2.3.2.5.2 Oberflächengewässer

Unter dem Begriff oberflächennahe Gewässer sind sowohl Fließgewässer als auch stehende Gewässer zu verstehen. Aus oberflächennahen Gewässern kann Wärme über Wärmetauscher entzogen werden und durch Wärmepumpen auf ein für leitungsgebundene Wärmesysteme nutzbares Temperaturniveau angehoben werden. Dabei unterliegen die Gewässertemperaturen jahrzeitlichen Schwankungen, was die Effizienz der Anlagen und damit die Nutzbarkeit der Wärme einschränkt. Darüber hinaus gibt es eine Reihe von ökologischen Restriktionen, denen die Installation einer Oberflächenwasser-Wärmepumpe unterliegt. Hierbei sind insbesondere die maximal entnehmbare Wassermenge, die Auskühlung des entnommenen Volumenstroms und die Auskühlung des Gewässers zu nennen. In der Gemeinde Glandorf existieren keine größeren stehenden Gewässer, die für die Nutzung durch eine Wärmepumpe in Frage kommen. Daher wird hier nur auf Fließgewässer eingegangen.

In Glandorf existiert mit dem Oedingberger Bach ein potenzielles Fließgewässer, aus welchem Wärme entzogen werden könnte. Für die übrigen Bäche wird angenommen, dass deren Potenzial im Verhältnis vernachlässigbar ist.

Für die Potenzialabschätzung des Oedingberger Baches wurden folgende Annahmen getroffen:

- 20 % des Durchflusses werden genutzt
- Abkühlung des Massenstroms um 5 K

- Maximale Abkühlung des Baches auf eine Mindesttemperatur von 4 °C
- Mittlere Vorlauftemperatur 70 °C
- Auslegung der Wärmepumpen auf ca. 6.500 Vollbenutzungsstunden (unter der Voraussetzung, dass die Wärme auch im Sommer voll genutzt werden kann).

Für die Potenzialermittlung wird somit angenommen, dass im Winter ein Fließgewässer nicht unter 4 °C abgekühlt werden darf. Wenn die Wassertemperatur bereits vor Wärmeentzug die 4 °C unterschreitet, kann keine Wärme entnommen werden.

Für den Oedingberger Bach ergibt sich aus den Berechnungen ein theoretisches Wärmeerzeugungspotenzial von ca. 4,1 MW bzw. 26,8 GWh pro Jahr für eine Nutzung in Wärmenetzen. Die genannten Potenziale sind zunächst als rein theoretische Potenziale zu interpretieren und müssen bei realer Nutzung mit Entnahmerestriktionen bzw. möglichen Abnahmeprofilen abgeglichen werden (Zielszenarien). Zudem muss jeweils noch eine Prüfung der genehmigungsrechtlichen Fragestellungen erfolgen. Die entsprechenden Ämter bei Gemeinde und Kreis sind bei weiteren Planungen zur Umsetzung von Projekten in jedem Fall einzubeziehen.

2.3.2.6 EE-Strom zur Wärmeerzeugung

Die meisten Wärmequellen aus erneuerbaren Energien liefern keine ausreichenden Temperaturen, um sie direkt zu nutzen. Mittels Wärmepumpen muss das Temperaturniveau durch Stromeinsatz angehoben werden. Damit die Wärmeerzeugung vollständig treibhausgasneutral ist, muss auch der eingesetzte Strom vollständig aus erneuerbaren Energien erzeugt werden. Der Strommix in Deutschland wird derzeit bereits zu mehr als 50 % aus erneuerbaren Energien erzeugt (2023: 56 % It. Stat. Bundesamt). Dieser Anteil soll gemäß den im EEG 2023 formulierten Zielen weiter ansteigen auf 80 % in 2030 und 100 % in 2040. Somit wird der Strom im Zeitverlauf immer grüner und langfristig vollständig treibhausgasneutral.

Dasselbe gilt für Strom, der in Elektrokesseln direktelektrisch in Wärme umgewandelt wird. Hierbei entsteht jedoch ein höherer Stromverbrauch als bei Wärmepumpen, da Strom die alleinige Energiequelle ist und keine Umwelt- oder Abwärme genutzt wird. Elektrokessel können jedoch für die Spitzenlast und in Stunden mit überschüssiger Energie aus erneuerbaren Energien sinnvoll sein.

Durch den Einkauf von Grünstrom für strombetriebene Wärmeerzeuger kann bereits heute Wärme erzeugt werden, die als "treibhausgasneutral" deklariert werden kann. Für die Energiewende insgesamt ist dies jedoch ohne Bedeutung. Hierfür ist allein entscheidend, dass Anlagen erneuerbarer Energien gebaut werden.

Stromerzeugungspotenzial aus Windkraftanlagen

Als lokale Energiequelle für Strom, der zur Wärmeerzeugung eingesetzt werden könnte, kommt praktisch nur Windenergie und aufgrund der gegenläufigen Profile (Wärmebedarf v. a. im Winter vs. Stromerzeugung v. a. im Sommer) eingeschränkt Solarenergie (Photovoltaik, PV) in Frage. Im Gemeindegebiet Glandorf ist gemäß Flächenpotenzialanalyse

für Windenergie an Land in Niedersachsen (WINNIEPOT) ein Windenergiepotenzial vorhanden²². Im Rahmen der Potenzialstudie wurde das Windenergiepotenzial in Konfliktrisikoklassen eingeteilt. Die Studie weist Flächen in Niedersachsen gewisse Konfliktrisikowerte zwischen 1 (100 % nutzbarer Flächenanteil) und 6 (0 % nutzbarer Fläche) zu. Das auf dieser Basis ermittelte Flächenpotenzial stellt die Grundlage für die Zuweisung der Teilflächenziele auf die Träger der Regionalplanung (Landkreise bzw. Planungsregionen) dar. Im Folgenden werden nur die Flächenpotenziale berücksichtigt, welche im regionalen Raumordnungsprogramm als Windvorrangflächen ausgewiesen sind. Des Weiteren wurden bestehende und geplante Windenergieanlagen aufgenommen und deren Fläche anteilig ausgenommen. Es ergibt sich somit eine Potenzialfläche von etwa 121.000 m². Hierauf ließen sich Windenergieanlagen mit einer elektrischen Gesamtleistung von ca. 23 MW errichten (angelehnt an Flächenbedarf des LANUV Energieatlas NRW Potenziale Windenergie 2023), welche unter Annahme von 3.000 Vollbenutzungsstunden ca. 69 GWh/a an Strom produzieren könnten.

Stromerzeugungspotenzial aus zentralen Photovoltaikanlagen

Im Rahmen dieser Studie wurde auch eine grobe Abschätzung lokaler PV-Potenziale für Freiflächen vorgenommen. Hierbei wurde eine GIS-Analyse der in Frage kommenden Flächen durchgeführt. Die bereits für Solarthermie identifizierten Flächen (Nähe zu potenziellen Wärmenetzen, siehe Kapitel 3) wurden abgezogen. Es verbleibt ein theoretisches Flächenpotenzial von 3.650 ha (36,5 Mio. m²), auf dem prinzipiell PV-Anlagen errichtet werden könnten. Auch dieses theoretische Potenzial ist unter genehmigungstechnischen und damit insbesondere auch umweltrelevanten Restriktionen zu prüfen. Natur-, FFH- sowie Landschaftsschutzgebiete wurden bei der Flächenanalyse ausgeschlossen.

Unter der Annahme, dass tatsächlich 20 % dieser Flächen nutzbar sind, ergibt sich ein Potenzial von 731 ha (7,31 Mio. m²), auf denen theoretisch eine PV-Leistung von 731 MW errichtet werden könnte. Damit könnte mit der mittleren Solareinstrahlung von Deutschland (Mitte) 804 GWh/a Strom erzeugt werden. Diese sind aber für die Wärmeerzeugung in Glandorf nur in geringem Maße nutzbar, da die Lastgänge von Erzeugung und Bedarf jahreszeitlich gegenläufig sind. Darüber hinaus wird der PV-Strom aus Freiflächenanlagen wegen der wirtschaftlichen Gesichtspunkte i. d. R. in das Stromnetz eingespeist, um die Förderung nach EEG zu erhalten. Dann steht er für die Wärmeversorgung nicht direkt zur Verfügung. Für eine treibhausgasneutrale Wärmeversorgung spielt lokal erzeugter PV-Strom praktisch keine Rolle.

<u>Stromerzeugungspotenzial aus dezentralen Photovoltaikanlagen</u>

Neben dem Potenzial für Freiflächen-PV wird auch das dezentrale Potenzial zur Erzeugung von Solarstrom ermittelt. Als Datengrundlage dient das Solarkataster des Landkreises Osnabrück auf Gebäudeebene. Das Solardachkataster weist die auf allen

²² Flächenpotenzialanalyse für Windenergie an Land in Niedersachsen (Oktober 2023)

geeigneten Dachseiten des Gebäudes installierbare Leistung in kWp aus. Als weitere Datengrundlage dient der adressscharfe Wärmeatlas.

Die Auswertung erfolgt, indem die installierbare Leistung auf Gebäudeebene aggregiert wird. Die möglichen zu erzeugenden PV-Energiemengen werden über eine Aggregation der installierbaren PV-Leistung auf Adressebene bestimmt.

Als Ergebnis wird ein Potenzial von in Summe 98 GWh/a bzw. 89,2 MWp ermittelt. Es umfasst jede geeignete Dachfläche inkl. Garagen. Auch werden je Dachflächengröße im Vergleich zum Stromverbrauch der Gebäude stark überdimensionierte Anlagen angenommen. Eine technisch und wirtschaftlich sinnvolle Auslegung würde ein deutlich geringeres Potenzial aufzeigen, da insbesondere in Wohngebäuden PV-Anlagen auf deutlich geringere Anteile an der Dachfläche ausgelegt werden.

Die nachfolgende Grafik zeigt die baublockbezogene kartografische Darstellung in MWh/ha.

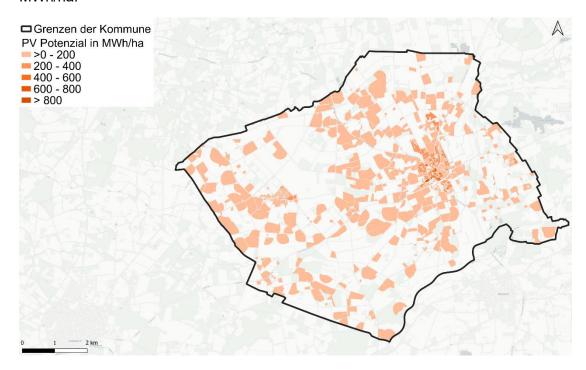


Abbildung 37: Potenzial Dachflächen-Photovoltaik in Glandorf¹

Bei der Betrachtung der Stromerzeugung zur Wärmeerzeugung ist zu beachten, dass bei Strom aus Windkraft und PV die Deckung des Verbrauchs durch die Erzeugung zeitgleich nur eingeschränkt möglich ist, auch wenn bei der Windstromerzeugung im Vergleich zur PV-Stromerzeugung ein größerer Anteil des Windstroms zu Zeiten erzeugt wird, zu denen auch ein Wärmebedarf besteht. Da Erzeugungsprofil und Bedarfsprofil nicht zusammenpassen, muss mit Überschuss- und Residualmengen gehandelt werden. Der Gesamtbedarf an Strom kann nicht allein durch Wind- oder PV-Strom gedeckt werden. Wird der Strom aus Windkraft und PV in das Stromnetz eingespeist, sorgt er dafür, dass der Netzstrom in ganz Deutschland grüner wird.

2.3.2.7 Abwärme

2.3.2.7.1 Unvermeidbare industrielle Abwärme

Bezüglich des Anfalls und möglichen Energieangebots aus unvermeidbarer Abwärme wurde eine Befragung der bedeutendsten Unternehmen in Glandorf durchgeführt. Von den im Rahmen des Stakeholder-Workshops versandten Fragebögen wurden 8 mehr oder weniger vollständig beantwortet. Vier der Unternehmen sind Biogasanlagen, die bereits in der Auswertung zur Biomasse im Kapitel 2.3.2.4 berücksichtigt wurden. Unter den übrigen Unternehmen sind drei bereit Wärme abzugeben.

Bei dem Unternehmen mit dem verhältnismäßig größten Potenzial fällt die Abwärme unregelmäßig und mit tageszeitlichen Schwankungen an. Sie steht zum größten Teil mit einem Temperaturniveau von ca. 25 °C zur Verfügung. Die Abwärme, die mit diesem Temperaturniveau anfällt, könnte über eine Wärmepumpe auf das notwendige Niveau gehoben werden. Insgesamt würde bei Nutzung aller Wärmequellen am Standort eine Abwärme in Höhe von ca. 11,5 GWh/a anfallen. Der technische Aufwand für die Erschließung des Potenzials im Unternehmen selbst wird als mittel bewertet. Jedoch besteht mit einer Entfernung von ca. 2,5 km (Luftlinie) zum Ort Glandorf ein wesentliches Hindernis für die Einbindung der Wärme in ein potenzielles Wärmenetz.

Die zwei übrigen Unternehmen verfügen schätzungsweise über eine Abwärmemenge von insgesamt 0,14 GWh. Damit tragen diese einen verhältnismäßig kleinen Teil zum Gesamtpotenzial aus Abwärme bei.

Falls die genannten Quellen erschlossen würden, könnte insgesamt ein Wärmepotenzial aus industrieller Abwärme von ca. 11,6 GWh/a für Wärmenetze nutzbar gemacht werden. Es ist jedoch zu prüfen, inwiefern deren Erschließung wirtschaftlich Sinn ergibt.

2.3.2.7.2 Abwärme aus Abwasser

Eine Abwasser-Wärmepumpe nutzt die Wärmeenergie aus Abwasserquellen wie Abwasserkanälen, Abwasserleitungen, Kläranlagen oder industriellen Abwässern.

Der wesentliche Vorteil von Abwasser als Wärmequelle ist die relativ konstante Temperatur, die ganzjährig zur Verfügung steht. Die Wärmepumpe erreicht daher auch im Winter, ähnlich wie bei oberflächennaher Geothermie, relativ hohe Leistungszahlen (Coefficient of Performance oder COP). Der COP ist ein Maß für die gegenwärtige Effizienz einer Wärmepumpe, während die Jahresarbeitszahl (JAZ) ein Maß für die Effizienz der Wärmepumpe innerhalb eines ganzen Jahres ist.

Die Nutzung von Abwasserwärme kommt in **bestehenden** Kanälen erst ab einer Nennweite der Kanäle größer DN 800 in Frage. Derart dimensionierte Kanäle liegen nach den derzeitigen Erkenntnissen jedoch in den Ortschaften der Gemeinde Glandorf nicht vor.

Eine weitere Möglichkeit des Entzugs von Wärme aus Abwasser besteht bei der Kläranlage von Glandorf. Diese weist nur eine geringe Entfernung von ca. 300 m zum Ort Glandorf auf. Hier stehen Abwassermengen in gereinigter Form konzentriert auf eine Wärmequelle zur Verfügung. Zudem besteht die Option, die Klärwässer aus Bad Laer

zukünftig nach Glandorf zu leiten und dort, im Rahmen einer möglichen Erweiterung, in der Kläranlage weiter zu behandeln.

Es ist zu beachten, dass sich - bei einer Nutzung der Abwärme vor der Kläranlage - niedrige Abwassertemperaturen im Winter negativ auf die Abbauleistung der Kläranlage auswirken. Bei Überlegungen zur Nutzung von Wärme aus dem Schmutzwassernetz muss daher geprüft werden, ob sich die Zulauftemperatur des Abwassers zur Kläranlage dadurch relevant ändert. Hinzu kommt der Reinigungsaufwand der Wärmetauscher im Kanal.

Bei Nutzung des Ablaufes der Kläranlage hingegen wird der Klärprozess nicht negativ beeinflusst und auch die Reinigung ist mit deutlich geringerem Aufwand verbunden als bei der Nutzung ungereinigter Abwässer.

Das Wärmepotenzial aus dem Abwasser wurde anhand der durchschnittlichen Abwasserzuflüsse und Abwassertemperaturen der Tage über ein Jahr bestimmt. Dafür wurden für die theoretische Potenzialermittlung die derzeitigen Abwassermengen aus den Kläranlagen Glandorf und die optionale Menge aus Bad Laer zusammen und eine Temperatur der durchmischten Abwässer berücksichtigt. Zudem wurde für die Leitung der Abwässer aus Bad Laer nach Glandorf ein Temperaturabfall von 3 K angenommen. Für die Potenzialberechnung selbst wurde eine Auskühlung bis zu einer Abwassertemperatur von 4 °C und ein Zieltemperaturniveau für die erzeugte Wärme von 70 °C angenommen. Die maximale Auskühltemperatur kann eingeschränkt werden, um das Gewässer, in welches das Abwasser nach der Kläranlage eingeleitet wird, ökologisch nicht zu gefährden. Die entsprechenden Ämter bei Kommune und Kreis sind daher bei weiteren Planungen zur Umsetzung von Projekten in jedem Fall einzubeziehen. Die Wärmepumpe würde üblicherweise nicht auf die maximal mögliche thermische Leistung ausgelegt werden, weil sie diese Leistung nur vereinzelt in wenigen Stunden liefern könnte, sondern auf einen deutlich niedrigeren Wert, um ausreichend hohe Vollbenutzungsstunden und somit eine höhere Wirtschaftlichkeit zu erreichen. Eine sinnvolle Auslegung würde bei 1.500 bis maximal 2.300 kW liegen. Bei 1.750 kW thermischer Leistung ergeben sich über das genutzte Dargebotsprofil ca. 7.500 Vollbenutzungsstunden, vorausgesetzt, die Wärme kann im Sommer auch vollständig genutzt werden. Somit ergibt sich ein Wärmepotenzial von 13,1 GWh/a. Diese Menge kann jedoch voraussichtlich nicht komplett in Wärmenetzen genutzt werden. Zudem steht diese Wärmemenge auch nur in räumlicher Nähe zur Kläranlage zur Verfügung.

2.3.2.7.3 Thermische Abfallbehandlung

Abfälle fallen kontinuierlich in Städten und Gemeinden an und müssen entsorgt werden. Eine Form der Entsorgung ist die Verbrennung des Abfalls. Bei Verbrennung von Abfällen kann thermische Energie gewonnen werden. Die dabei entstehende Wärme hat ein hohes Temperaturniveau, welches sich für die Einspeisung in ein Wärmenetz gut eignet. Zudem muss der Abfall ganzjährig entsorgt werden, wodurch eine recht hohe Verfügbarkeit der Wärmequelle gegeben ist.

In der Gemeinde Glandorf existiert keine Abfallverbrennungsanlage. Die relevanten Abfallmengen werden außerhalb des Betrachtungsgebiets entsorgt. Daher ist das Potenzial aus thermischer Abfallbehandlung nicht ausweisbar.

2.3.3 CO₂-neutrale Gase

Im Bereich der Nutzung von Gasen für die Wärmeerzeugung können CO₂-neutrale Gase bzw. für eine Übergangszeit auch eine Mischung von Gasen betrachtet werden.

Die CO₂-neutralen Gase werden in diesem Bericht wie folgt definiert (für die gesetzlichen Definitionen sei auf das Wärmeplanungsgesetz und das Gebäudeenergiegesetz verwiesen):

- Grünes Gas: Dieser Terminus ist ein Sammelbegriff für jegliche CO₂-neutralen Gase.
- Biogas: Biogas wird durch die Fermentierung von biogenen Stoffen, wie Maissilage, Gülle o. ä. in einer Biogasanlage produziert. Es besteht zu annähernd gleichen Anteilen aus Methan und CO₂ und kann, in Biogas-BHKWs eingesetzt, direkt für die Strom- und Wärmeerzeugung genutzt werden. Da das enthaltene CO₂ ursprünglich aus der Atmosphäre stammt und in der Biomasse gespeichert wurde, ist das Biogas CO₂-neutral. Wichtig ist jedoch, dass bei Leckagen CO₂ und auch Methan (mit wesentlich stärkerem Treibhauseffekt als CO₂) frei werden kann. Das Potenzial von Biogas wird in Abschnitt 2.3.2.4 behandelt.
- <u>Klärgas:</u> Analog zu Biogas entsteht Klärgas bei der Klärung von Abwasser und kann in BHKW genutzt werden.
- <u>Deponiegas:</u> Analog zu Biogas wird Deponiegas in Mülldeponien frei. Wird es konzentriert aufgefangen, kann es auch energetisch genutzt werden.
- Biomethan: Wird das CO₂, welches im Biogas enthalten ist, abgetrennt und das Gas so auf Erdgasqualität gebracht, spricht man von Biomethan. Dieses kann, bei Einhalten der notwendigen Grenzwerte, auch in das Erdgasnetz eingespeist und so von allen Endkundinnen und Endkunden genutzt werden. Für die Freisetzung von Methan gelten die Vorschriften und Grenzwerte der GasNZV, des EEG sowie der TA-Luft.
- <u>Definition synthetisches Gas:</u> Darunter wird ein Gas verstanden, welches durch einen chemischen Prozess künstlich hergestellt wird.
- Wasserstoff: Wasserstoff muss immer durch einen chemischen Prozess erzeugt werden, da er nicht in dieser Form natürlich vorkommt. Dabei gibt es unterschiedliche Farben, die den Herstellungsprozess aufzeigen. Für die kommunale Wärmeplanung ist v. a. der grüne Wasserstoff relevant: Grüner Wasserstoff wird per Elektrolyse aus Wasser mithilfe von erneuerbarem Strom erzeugt. Des Weiteren gibt es noch blauen (aus Dampfreformierung von Erdgas mit CO₂-Abscheidung und -Speicherung), türkisen (aus Pyrolyse von Erdgas) und orangenen (hergestellt aus Biomasse oder per Elektrolyse mit Strom aus Abfallverwertung).

- <u>Synthetisches Methan:</u> Synthetisches Methan wird aus CO₂-neutralem Wasserstoff mit CO₂ über den Verfahrensschritt der Methanisierung hergestellt. Damit das synthetische Methan CO₂-neutral ist, muss dieses CO₂ entweder biogenen Ursprungs, d. h. aus Biomasse, sein oder aus der Atmosphäre (z. B. über Direct Air Capture zur Abscheidung von CO₂ aus der Umgebungsluft) stammen.
- Grünes Methan: Dieser Begriff fasst Biomethan und synthetisches Methan zusammen.

Zusätzlich wird in späteren Abschnitten zum Teil von <u>Mischgasen</u> gesprochen. Diese umfassen verschiedene Mischungen, v. a. von Erdgas mit mindestens einem CO₂-neutralen Gas, um z. B. die Anforderungen des GEG zu erfüllen.

Die Potenziale CO₂-neutraler Gase wurden analysiert, werden jedoch aus folgenden Gründen an dieser Stelle nicht quantifiziert:

Eine Leitung des geplanten deutschen Wasserstoff-Kernnetzes verläuft zukünftig in mehreren Kilometer Entfernung von den jeweiligen Ortschaften der Gemeinde Glandorf. Die Nutzbarkeit hierdurch gelieferter Wasserstoffmengen hängt von der Einbindung in ein ggf. vorhandenes Verteilnetz und der priorisierten Nutzung für bestimmte Verbrauchergruppen, z. B. der Industrie, ab. Wasserstoff soll prioritär industriellen Anwendungen der Bereiche Stahl, Chemie, Glas, Papier etc. sowie der Energiewirtschaft (als Substitut für herkömmliche Gaskraftwerke) und Anwendungen im Schwerlastverkehr bzw. ÖPNV zur Verfügung stehen. Somit ist die Nutzung von Wasserstoff für die Wärmebereitstellung in der zukünftigen Verteilstrategie nachrangig eingeplant. Es besteht hier ein wesentlicher Unsicherheitsfaktor, ob Wasserstoff überhaupt lokal verfügbar gemacht wird.

Biomethan ist aktuell im deutschen Gasnetz nur bilanziell und in geringen Mengen verfügbar. Mit den vorhandenen Biogasanlagen gibt es in Glandorf ein theoretisches Potenzial, insbesondere bei einer Erweiterung der bestehenden Anlagen, welches den aktuellen Erdgasbedarf von Glandorf decken könnte. Bei einer Aufbereitung des Rohbiogases zu Biomethan muss davon ausgegangen werden, dass das aufbereitete Biomethan in das vorgelagerte Gasnetz eingespeist werden muss, um die saisonalen Schwankungen auszugleichen. Damit werden diese Biomethanmengen zwar lokal produziert, stehen aber bilanziell diversen Nachfragern auch überregional zur Verfügung. Bestimmte Abnehmer, z. B. im industriellen Bereich oder im Verkehrssektor, haben eine hohe Zahlungsbereitschaft für bilanzielles Biomethan, woraus ein höherer Preis als für Erdgas inkl. CO2-Kosten resultiert. Ein flächendeckender Einsatz in dem vorhandenen Gasverteilnetz wird daher mit den aktuellen Rahmenbedingungen nicht wirtschaftlich sein. Die in der kommunalen Wärmeplanung berücksichtigten Biomethanmengen müssen auf Landesebene aggregiert und ab 2030 in einem landesweiten Mengenabgleich plausibilisiert werden.

Synthetische Gase stehen aktuell nicht zur Verfügung und sind für die Zukunft mit Unsicherheiten behaftet. Um die mittelfristige Verfügbarkeit trotzdem abzubilden, wird daher in Kap. 3 modellbasiert der zukünftige Preis für synthetisches grünes Gas sowie eines Mischgases aus Erdgas und synthetischem Gas abgebildet.

Es fallen keine Potenziale auf Basis von Deponiegas an, da im Betrachtungsgebiet Deponien nicht vorhanden sind. Ebenfalls sind keine relevanten Potenziale aus Klärgas vorhanden.

Es wird empfohlen, die grundlegenden Annahmen fortlaufend zu prüfen, spätestens alle 5 Jahre im Rahmen der Fortschreibung des kommunalen Wärmeplans.

2.4 Ergebnisse

Die folgende TabelleTabelle 3 zeigt eine Übersicht der ermittelten theoretischen bzw. technischen Potenziale zur treibhausgasneutralen Wärmeerzeugung, die um bestehende technische Restriktionen reduziert wurden. In einem weiteren Schritt wären diese Potenziale hinsichtlich des zeitlichen Verlaufs den potenziellen Bedarfen möglicher Wärmenetze gegenüberzustellen, um den tatsächlich nutzbaren Anteil des Potenzials zu ermitteln. Der aktuelle Wärmedarf von 54 GWh/a könnte theoretisch um 27 % reduziert werden auf 39 GWh/a, der realistische Reduktionswert im Jahr 2045 im Rahmen der Zielszenarien ermittelt.

Theoretisches Wärmepotenzial (unter Berücksichtigung technischer Restriktionen)	MW	GWh/a		
Zentrale Potenziale:				
Solarthermie (Freifläche)	48	32		
Geothermie (Erdsonden) zentral und Wärmepumpe; <u>alternativ</u> zu Solarthermie	70	140		
Mitteltiefe- und Tiefe-Geothermie (hydrothermal)	0	0		
Feste Biomasse	-	0,9		
Biogas	-	28		
Umweltwärme (Fließgewässer) und Wärmepumpe	4,1	27		
Umweltwärme (Luft) zentral und Wärmepumpe	überall verfügbar, Restriktionen einzelfallabhän- gig, Wärmeangebot und -bedarf gegenläufig			
Abwärme (Unvermeidbare industrielle Abwärme)	-	12		
Abwärme (aus Abwasser) + Wärmepumpe	1,8	13		
Thermische Abfallbehandlung	-	-		

Dezentrale Potenziale:				
Solarthermie (Dach)	2,6	1,7		
Geothermie (Erdsonden) dezentral + Wärmepumpe	27	53		
Umweltwärme (Luft) dezentral + Wärmepumpe	12	23		

Tabelle 3: Übersicht der Potenziale erneuerbarer Wärme

Die Potenziale werden unterschieden in zentrale und dezentrale Potenziale.

Zentrale Potenziale dienen zur Deckung des Wärmebedarfs mittels leitungsgebundener Wärmeversorgung. Insbesondere Wärmepumpen-basierte Technologien werden aktuell stark gefördert und dienen daher als Benchmark für die Erzeugungstechnologien. Die Realisierung der Potenziale muss sich dabei immer an der Nähe der Erzeugung zu den Verbrauchssenken orientieren, damit die Zuleitungen der Wärmenetze nicht zu lang und damit unwirtschaftlich werden. Eine detailliertere Bewertung der technischen und wirtschaftlichen Realisierungsmöglichkeiten erfordert Machbarkeitsstudien, die nach dem BEW gefördert werden.

Dezentrale Potenziale bestehen ebenfalls insbesondere im Bereich der Luft-Wärmepumpen. Luft-Wärmepumpen können einen Großteil des dezentralen Wärmebedarfs abdecken und sind lediglich eingeschränkt durch Lärmrestriktionen oder in geringem Maße durch fehlende Aufstellflächen. Aktuell sind Förderungen nach dem BEG möglich.

Das Potenzial für CO₂-neutrale Gase in der Wärmeversorgung wird als gering angesehen. Aktuell sind keine regionalen Projekte zur Erzeugung geplant. Die gegebenenfalls über Transportnetze zukünftig zur Verfügung stehenden Gasmengen werden mit hoher Wahrscheinlichkeit prioritär den produzierenden Unternehmen zur Verfügung stehen.

Insgesamt ergibt die Potenzialanalyse ausreichende Potenziale treibhausgasneutraler Wärmequellen für die Deckung des Wärmebedarfs in Glandorf.

Eine vollständige treibhausneutrale Wärmeversorgung ist nicht nur auf die Nutzung regenerativer Wärmequellen angewiesen, sondern braucht auch emissionsfrei erzeugten Strom, da einige Wärmeerzeuger wie z. B. die Wärmepumpe aber auch die Wärmenetze Strom für ihren Betrieb benötigen. Die kommunale Wärmeplanung fordert daher die Ausweisung regionaler treibhausgasneutraler Stromerzeugungspotenziale. Eine Übersicht des Potenzials aus zentralen und dezentralen Erzeugungsanlagen für Glandorf findet sich in nachfolgender Tabelle. Bei den ausgewiesenen Potenzialen ist jedoch zu beachten, dass die Gleichzeitigkeit zwischen der Stromerzeugung und dem Wärmebedarf nur eingeschränkt vorhanden ist. Damit ist die direkte Nutzung der Potenziale für die regionale Wärmeversorgung nur bedingt möglich.

Theoretisches Potenzial für lokale Stromerzeugung (unter Berücksichtigung technischer Restriktionen)	MW	GWh/a		
Zentrale Potenziale:				
Solar (PV) (Freifläche)	731	804		
Wind (Abgleich mit ROP erforderlich)	23	69		
Dezentrale Potenziale				
Solar (PV) (Dach)	89	98		

Tabelle 4: Übersicht zu den Potenzialen erneuerbarer Stromerzeugung

3 Zielszenarien und Entwicklungspfade

Aufgabenstellung: Auf welchem Weg gelingt das?

Ziel: Entwicklung Szenario zur Erreichung der Treibhausgasneutralität im Jahr 2045, konkret:

- Planung des Weges zur Treibhausgasneutralität 2045 mit "Meilensteinen" für 2030, 2035 und 2040
- Zonierung des Betrachtungsgebietes (z.B. nach Art der Bebauung, Quartieren, Stadtvierteln oder anderen geeignete homogenisierende Clusterungskriterien mit Blick auf die Wärmeversorgung): Ausweisung der Gebiete für die entweder eine leitungsgebundene oder eine dezentrale Versorgung besonders geeignet ist.
- Zuordnung möglicher Erzeugungstechnologien

Ergebnis: Szenario zur Deckung des zukünftigen Wärmebedarfs mit EE, konkret:

- Entwicklung eines Szenarios zur Deckung des zukünftigen Wärmebedarfs mit erneuerbaren Energien zur Erreichung einer treibhausgasneutralen Wärmeversorgung.
- Identifikation und Ausweisung von Gebieten, die sich für die leitungsgebundene Wärmeversorgung anbieten und solchen, die sich für eine dezentrale Versorgung eignen. Zusätzlich Ausweisung von "Übergangsgebiete", für die beide Versorgungsarten in Betracht kommen.
- Durchführung bzw. Abgleich mit vorhandenen Erzeugungs- und Zielnetzplanungen
- Erstellung von "Meilensteinen" auf dem Weg nach 2045 ("Weg")
- Ermittlung wirtschaftlicher Kennwerte als Zielgrößen (z.B. Preis/kWhfür die Wärmebereitstellung) in Form von Wärmevollkostenvergleichen für eine Anzahl typischer Versorgungsfälle, die die Versorgung in der Kommune umfassend abbilden.

3.1 Aufgabenstellung

Nach der Klärung der Ausgangslage (Bestandsanalyse) und der Identifizierung der Möglichkeiten zur Zielerreichung (Potenzialanalyse) wird im folgenden Kapitel der Weg aufgezeigt, der vom Status quo zum Ziel führt. Dies beschreibt das "Zielszenario".

In welchen Gebieten können welche der identifizierten Potenziale für eine treibhausgasneutrale Wärmeversorgung genutzt werden?

3.2 Wärmebedarfsentwicklung: Bedarfsreduktion und Restwärmebedarf über die Zeit

Einer der größten Hebel für die Dekarbonisierung der Wärmeversorgung stellt die **Bedarfsreduktion** dar. Jede Kilowattstunde, deren Erzeugung von vorneherein nicht erforderlich ist, reduziert den Aufwand für Wärmeerzeugungstechnologien. Somit ist Bedarfsreduzierung ein zentraler Baustein der gesamten Wärmeplanung, welche sich hier in den Zielszenarien und Entwicklungspfaden konkretisiert, die Identifizierung von Möglichkeiten, die Wärmebedarfe im Einzelnen und somit in Summe absolut zu minimieren. Die "Vergrünung" des dann verbleibenden Restwärmebedarfs ist dann der zweite Schritt.

3.2.1 Methodik

Raumwärme und Warmwasser

Mit Blick auf die Raumwärme, "das Heizen", ist der Ansatzpunkt für diesen Hebel natürlich die Gebäudehülle bzw. etwas weiter gefasst die **Sanierung der Bausubstanz der Gebäude**. Hinzu kommt die Effizienzsteigerung für die Warmwasserbereitung durch z. B. Dämmung der Verteilleitungen. Dieses Potenzial für den Gebäudebestand in Glandorf zu bestimmen und ein Zielszenario wie auch einen Entwicklungspfad zu diesem Ziel aufzuzeigen, ist Gegenstand dieses Kapitels.

Hierfür wurde ein **Modell** entwickelt, welches auf dem **Wärmeatlas** aufbaut. Auf die Zukunft ausgerichtet wird der "statische" Wärmeatlas, der aus der Bestandsanalyse resultiert und den Status quo abbildet, sodann durch den Einbezug **weiterer Parameter** fortgeschrieben.

Diese Einflussparameter sind für die Raumwärme und Warmwasser:

- Sanierungspotenzial
- Sanierungsrate
- Klimaeffekt

Das **Sanierungspotenzial** wird in der Potenzialanalyse ermittelt. Die Gebäude mit dem höchsten Potenzial (v. a. alte und unsanierte Gebäude) werden tendenziell als Erstes saniert. Neuere Gebäude mit wenig Potenzial werden eher später oder gar nicht saniert. Dabei wird für alte und unsanierte Gebäude ein höheres Sanierungspotenzial ermittelt als für neuere oder bereits sanierte Gebäude.

Ein Zufallsalgorithmus trägt der Unsicherheit Rechnung, dass jede Gebäudeeigentümerin und jeder Gebäudeeigentümer über Maßnahmen selbst entscheiden, sich demnach also nicht sicher voraussagen lässt, welches Gebäude wann saniert wird. Daraus ergibt sich mit den oben genannten Parametern die "Sanierungsaffinität". Die **Sanierungsaffinität** wird für 5-Jahres-Zeiträume ermittelt (erster Zeitraum 2025-2030).

Jene Gebäude mit der höchsten unterstellten Sanierungsaffinität werden schließlich ausgewählt, um im Modell die jeweils angesetzte **Sanierungsrate** zu erreichen. Die Rate selbst wird linear steigend von heute **1** % **auf 1,7** % im Jahr 2045 im Modell abgebildet, vgl. auch die am 28.5.2024 in Kraft getretene Europäische Richtlinie zur Gesamteffizienz von Gebäuden²³. Dies berücksichtigt einerseits, dass der Handlungsdruck auf Gebäudeeigentümerinnen und Gebäudeeigentümer (bzw. allgemeiner: die Bereitschaft zu sanieren) über die Zeit ansteigen wird: Wo CO₂-Preise heute noch keinen Anreiz für die Reduktion des Energieverbrauchs geben, wird aufgrund steigender CO₂-Preise der Druck erhöht. Demnach ist es realistisch, von einer Steigerung der Sanierungsrate in der Zukunft auszugehen. Andererseits ist die Sanierungsrate nach oben realiter begrenzt, da nicht beliebig Ressourcen für die Sanierung, konkret insbesondere finanzielle Mittel,

²³ https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=OJ:L_202401275

aber auch Kapazitäten im Handwerk, zur Verfügung stehen. Eine Umsetzung des in Kapitel 2.3.1 hergeleiteten theoretischen Sanierungspotenzials ist daher unrealistisch.

Abbildung 38: Abhängigkeit des Gelingens der Wärmewende von individuellen Wirtschaftlichkeitserwägungen

Erneut ist es für das Grundverständnis wichtig, dass auch hier **keine Detail-"Planung" auf Ebene einzelner Gebäude** erfolgt. Auf überlagerter Ebene – konkret für die vorherrschenden Gebäude*typen* und in der Granularität der definierten Baublöcke – werden die relevanten Einflussparameter abgebildet. Die Ergebnisse werden zwar in der Bottom-up-Analyse auf einzelne Gebäude angewandt, die Zuordnung erfolgt jedoch stochastisch-probabilistisch, d. h. quasi zufällig. Der Einfluss der Zufallszahlen wurde jedoch so gewählt, dass weiterhin die relevanten Einflussparameter die Verteilung der Sanierung im Gemeindegebiet definieren.

Schließlich wird im Modell ergänzend berücksichtigt, dass der Klimawandel Wirkung entfaltet und die mittleren Jahrestemperaturen steigen. Dieser "Klimaeffekt" wird über die Gradtagzahlen, eine in der Gaswirtschaft gebräuchliche Kennzahl etwa zur Prognose von Mengenbedarfen, operationalisiert. Es wird somit unterstellt, dass durch steigende Temperaturen, also wärmere Winter, künftig weniger geheizt werden wird. Konkret stehen die Szenarien unter der Annahme, dass allein dadurch bis 2045 der Raumwärmebedarf um 10 % zurückgeht.

Prozesswärme

Die für die Industrie erforderliche Prozesswärme findet ebenfalls Berücksichtigung. Die grundsätzliche Annahme, dass Produktionsprozesse einem Effizienzfortschritt unterliegen, wird im Modell durch eine Reduktion des Prozesswärmebedarfs von 10 % bis ins Jahr 2045 unterstellt.

3.2.2 Ergebnisse

Die Ergebnisse der Wärmebedarfsentwicklung sind in der folgenden Abbildung dargestellt. Auch hier wird als dargestellte Größe nicht der Endenergieverbrauch (also die eingesetzten Energieträgermengen), sondern der Wärmebedarf verwendet. Bis 2045 reduziert sich der jährliche Wärmebedarf mit realistischen Annahmen von heute 66,6 GWh auf 55,5 GWh, also um 11,1 GWh bzw. 17 %. Dabei nimmt der Wärmebedarf v. a. aufgrund von Sanierungen ab.

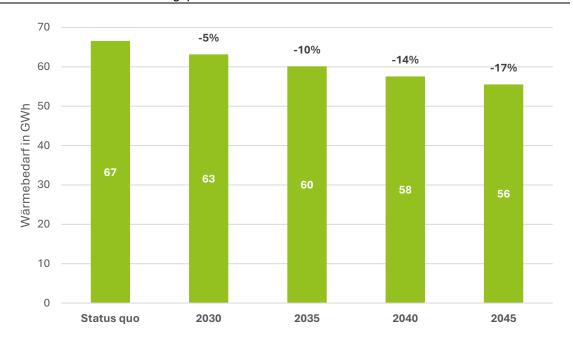


Abbildung 39: Absoluter bzw. relativer Wärmebedarfsrückgang in GWh und Prozent für Glandorf

Im Ergebnis liegen nach der Simulation zur Fortschreibung des Wärmebedarfs mit dem Modell nicht nur die aggregierten Werte für das Untersuchungsgebiet, sondern auch die Verteilung auf Gebäude- bzw. Baublockebene vor.

3.3 Wärmebedarfsdeckung

3.3.1 Wirtschaftliche Betrachtung aus Endkundensicht

3.3.1.1 Hintergründe, Annahmen und Modellbeschreibung

Im Wesentlichen auf Basis der festgelegten Sanierungsraten, aber auch durch den fortschreitenden Klimawandel, geht der prognostizierte Wärmebedarf von heute 67 GWh um 17 % auf 55 GWh im Jahr 2045 zurück. Zur Deckung dieses Bedarfs muss die Wärmeversorgung grundlegend umgestellt und damit der Großteil der heutigen Heizungen gegen treibhausgasneutrale Technologien getauscht werden. Diese individuelle Bereitschaft der Gebäudeeigentümerinnen und Gebäudeeigentümer ist somit wesentlich für das Gelingen der Wärmewende. Und hierfür sind – neben gesetzlichen Vorgaben, z. B. über das Gebäudeenergiegesetz – wirtschaftliche Überlegungen mit ausschlaggebend. Denn die Investitionen sind beträchtlich und deswegen wird die Entscheidungsfindung der handelnden Personen nicht allein von Einsicht und Überzeugung zum Klimaschutz getrieben.

Eine Wärmeplanung, die also diese Wirtschaftlichkeitserwägungen außer Acht lässt, plant systematisch unrealistisch. Somit ist eine Untersuchung der Wirtschaftlichkeit

unterschiedlicher Technologien aus Endkundensicht erforderlich. Diese wird in sogenannten Kunden-Technologie-Kombinationen (KuTeK) abgebildet. Einschränkungen zur Verfügbarkeit, z. B. für Gas, werden hier nicht betrachtet, da es sich um einen Vergleich unterschiedlicher Wärmeerzeugungstechnologien aus Endkundensicht handelt.

Technisch handelt es sich bei der Analyse um eine Vollkostenbetrachtung in Anlehnung an **VDI 2067**. Hierbei werden drei Kostendimensionen in den Blick genommen:

- 1. Kapitalgebundene Kosten (Investition, Installation, Förderung)
- 2. Bedarfsgebundene Kosten (Kosten für Energieverbrauch)
- 3. Betriebsgebundene Kosten (Wartung und Instandhaltung)

Die kapitalgebundenen Kosten umfassen

- die Investition in ein neues Heizungssystem²⁴,
- seine Installation bzw. den Umbau des Heizungssystems (Tausch von Ventilen und unter Umständen auch von Heizkörpern sowie hydraulischer Abgleich des Systems)
- Fördermöglichkeiten unter Berücksichtigung der Bundesförderung effiziente Gebäude (BEG) bzw. der Bundesförderung effiziente Wärmenetze (BEW)

Unter den **bedarfsgebundenen Kosten** sind die Kosten für Erzeugung der Wärme im engeren Sinne, also Brennstoff oder Strom inkl. aller Abgaben und Umlagen, zu verstehen.

Die **betriebsgebundenen Kosten** schließlich beinhalten die Kosten für Wartung und Instandhaltung der Anlagen.

Alle drei Kostenarten müssen Gebäudeeigentümerinnen und Gebäudeeigentümer berücksichtigen, wenn sie im Rahmen einer Kalkulation abwägen, für welche neue Heizungstechnologie sie sich entscheiden möchten. Auch und insbesondere für die Auswahl aus den sich bietenden Alternativen werden sie einen solchen Kostenvergleich anstellen. Dabei ist es wichtig, nicht nur die heutige Preisstruktur (v. a. der verbrauchsgebundenen Kosten) zu berücksichtigen, sondern auch zukünftige Entwicklungen, z. B. die zu erwartenden CO₂-Preis-Steigerungen oder die Erhöhung von Netznutzungsentgelten, zu antizipieren (siehe Exkurs zu BET-Energiemarktszenarien unten).

In der "KuTeK-Logik" wird "der Kunde" durch einen Gebäudetyp repräsentiert. Im Wesentlichen handelt es sich um je drei Typen von Einfamilien- oder Mehrfamilienhäusern bzw. Nichtwohngebäuden (inkl. Mischnutzung) unterschiedlicher Energieeffizienzklassen und damit Dämmstandards. Zusätzlich wird bei den Mehrfamilienhäusern bzw. Nichtwohngebäuden noch zwischen drei Größenklassen unterschieden, wodurch sich insgesamt zwölf Gebäudetypen ergeben.

Theoretisch – und unter Berücksichtigung des Gebäudeenergiegesetzes – stehen dem Kunden stets mehrere Heizungstechnologien zur Verfügung (Beschränkungen bzgl. der

_

²⁴ Die Investitionskosten wurden mit den Kostenansätzen der TEN abgestimmt.

Potenziale werden erst später berücksichtigt). Dies sind die beiden gängigen Technologien der Wärmepumpen (Luft- und Sole-Wärmepumpen) und die beiden Verbrennungstechnologien mit Pellets (als nachwachsender Rohstoff (NaWaRo)) und mit Gas, heute i. d. R. Erdgas, zukünftig auch mit grünem Gas. Bei der Luft-Wärmepumpe werden auch Hybridtechnologien untersucht, welche eine Luft-Wärmepumpe mit einem Gaskessel oder einer Ölheizung kombinieren. Somit kann die Wärmepumpe kleiner dimensioniert (sowie auch bei schlechteren Dämmstandards ohne großen Umstellungsaufwand eingesetzt) werden und der Gaskessel oder die Ölheizung können Bedarfsspitzen auch mit hohen Vorlauftemperaturen decken. Dabei wird sichergestellt, dass das Hybridgerät GEG-konform ist und somit der Gaskessel oder die Ölheizung nur einen kleinen Anteil der Wärmebereitstellung übernimmt. In den untersuchten Fällen entspricht dies ca. 10 %. Zusätzlich wird hier von einem steigenden Anteil von grünem Gas ausgegangen (angelehnt an die Werte aus GEG § 71 Absatz 9). Für Bestandsanlagen wären jedoch auch Hybridlösungen durch den Zubau beispielsweise einer Wärmepumpe möglich, die dann 65 % des zu deckenden Wärmebedarfs treibhausgasneutral liefern könnte. Nach dem aktuell geltenden GEG dürfen fossil befeuerte Heizungsanlagen längstens bis 2044 betrieben werden.

Für den Gaskessel werden zwei Varianten betrachtet: Nach GEG darf vor der Frist der kommunalen Wärmeplanung (für Glandorf 30.06.2028) weiterhin ein Gaskessel neu eingebaut werden, der steigende Grüngasanteile nach GEG § 71 Absatz 9 (15 % ab 2029, 30 % ab 2035, 60 % ab 2040) einhält. Zur Erreichung der Klimaneutralität in 2040 wird hier jedoch bereits ab 2040 eine Nutzung von 100 % treibhausgasneutralem Gas angenommen. Dieser Gaskessel wird im Folgenden "Gaskessel vor kWP" genannt und gilt als heutige Referenz für neue Heizungen.

Nach der Frist der kommunalen Wärmeplanung (für Glandorf 30.06.2028) muss die 65 %-Regel nach GEG § 71 Absatz 1 eingehalten werden (für die Übergangsregelungen und weitere Details sei auf das Gesetz selbst und die entsprechenden Paragrafen verwiesen). Um in Glandorf die Treibhausgasneutralität in 2040 zu erreichen, wird auch hier eine Nutzung von 100 % grünem Gas in 2040 angenommen. Diese Variante wird im Folgenden "Gaskessel nach kWP" genannt. Diese Anpassung gilt ebenso für die vorgenannten Hybridgeräte.

Tatsächlich eignet sich nicht jeder Heizungstyp in gleichem Maße für jeden Gebäudetyp, so dass sich dieser "theoretische Lösungsraum" für die Praxis in Abhängigkeit vom jeweiligen Gebäudetyp verengt. In der nachfolgenden Matrix werden die Kunden-Technologie-Kombinationen dargestellt, die für die sich anschließenden Analysen zur kommunalen Wärmeplanung zugrunde gelegt werden:

Abbildung 40: Definition der möglichen Kunden-Technologie-Kombinationen (KuTeK)

Im Anhang finden sich die detaillierten Kennwerte für die einzelnen Gebäudetypen. Die Technologieoption der leitungsgebundenen Wärmeversorgung ist in der Abbildung 40 der Vollständigkeit halber aufgeführt, eine detaillierte Betrachtung erfolgt im Kapitel 3.3.2.

Für Pelletheizungen, Gas- und Ölkessel werden für die Modellierung typische Wirkungsgrade verwendet. Die Annahmen zur Auslegung von Wärmepumpensystemen (Luft-Wärmepumpe, Sole-Wärmepumpe, Hybridgerät) verdienen dagegen erhöhte Aufmerksamkeit. Je nach Gebäudetyp und Sanierungsstand sind Vorlauftemperaturen und Wirkungsgrade von hoher Bedeutung für die Bewertung der Effizienz und Wirtschaftlichkeit. Die Auslegung der Systeme auf die Gebäudetypen der KuTeK orientiert sich an der Jahresarbeitszahl und dem Anteil der Gas- und Ölkessel (bei Hybridsystemen). Die Ermittlung dieser Kennzahlen wiederum erfolgt über Simulationen mit exemplarischen Lastgängen und Kennlinien gängiger Wärmepumpen-Hersteller für Wärmepumpen unterschiedlicher Größen, um möglichst realitätsnahe Parameter zu nutzen.

Exkurs: BET-Energiemarktszenarien zur Entwicklung des deutschen Energiesystems

Es müssen – auch im Rahmen der kommunalen Wärmeplanung – sehr grundlegende Annahmen für die Entwicklung des zukünftigen Energiesystems getroffen werden. Ohne sich auf eine solche Grundeinschätzung festzulegen, fährt sich die Planung an einem gewissen Punkt fest. Die Parameter dieser "Energiewelten" und die Zusammenhänge sind komplex. Um diese Ungewissheit ein Stück weit fassbar zu machen, hat BET mehrere fundamentale Energiemarktszenarien entwickelt, welche jeweils einem Narrativ folgen und Annahmen über die Verwendung und Veränderung der Energieträger im Energiesystem enthalten und ebenso daraus abgeleitete relevante Preise sowie Abgaben und Umlagen auf Strom etc. umfassen. Zwei dieser Szenarien stellen auf die Erreichung der Klimaneutralität in Deutschland im Jahr 2045 ab, wenngleich diese auf unterschiedlichem Weg erreicht wird. Für diesen Bericht wurden die Modell-

rechnungen so parametriert, dass eine Treibhausgasneutralität, wie vom Land Niedersachsen vorgegeben, schon im Jahr 2040 erreicht wird.

Elektronenszenario: Klimaneutralität 2045 Elektronen (KN 45-E)

Das Szenario KN 45-E nimmt den heutigen politischen Willen als Richtschnur. Die Klimaziele werden für das Jahr 2045 erreicht. Auch die Zwischenziele, insbesondere zum EE-Ausbau für die Jahre 2030 und 2035 und das Ziel von 15 Millionen E-PKW bis 2030, werden erreicht. Gleichzeitig wird ein vorgezogener Kohleausstieg im Jahr 2030 angenommen. Infolge des Ukraine-Kriegs ist die Bedeutung einer stärkeren energetischen Unabhängigkeit gewachsen. Energieimporte sollen stärker diversifiziert und durch einen forcierten Ausbau erneuerbarer Energien und die weitere Einsparung von Energie ("Effizienz") mittel- bis langfristig reduziert werden. Dies beinhaltet, dass große Fortschritte in vielen Bereichen, z. B. Ausbau von Strom- und Fernwärmenetzen, Ausbau EE, Ausbau Ladeinfrastruktur, Effizienzgewinne, Gebäudedämmung, Nutzerverhalten, Errichtung von Backupkapazitäten, Anpassung des normativen Rahmens antizipiert werden. Gasverteilnetze werden im Endsystem nur für die Versorgung der Industrie und Energiewirtschaft benötigt. Die Gasnetznutzungsentgelte steigen sehr stark an. Der Einsatz von Wasserstoff in der Gebäudewärme erfolgt nur indirekt über die Fernwärme.

Die Annahme des Gelingens im Elektronenszenario ist ambitioniert – insbesondere die Effizienz (inklusive Sanierung der Gebäude) und der Ausbau der EE (Akzeptanz / Flächen), aber auch der Ausbau von Strom- und Fernwärmenetzen sowie der Hochlauf der Elektromobilität stellen immense Herausforderungen dar.

Molekülszenario: Klimaneutralität 2045 Moleküle (KN 45-M)

Im Szenario KN 45-M wird diesen potenziellen Schwierigkeiten stärker Rechnung getragen und angenommen, dass u. a. die Elektrifizierung der Endverbraucher im Gebäude-Bereich nicht vollständig gelingt. Wasserstoff und synthetische Gase verbleiben teilweise in der Raumwärme und damit auch der Bedarf für ein reduziertes Gasverteilnetzgerüst. Die Gasnetznutzungsentgelte steigen moderat an. Der etwas langsamere Ausbau der EE führt dazu, dass die absoluten EE-Ausbauziele für 2030 verfehlt werden.

Gleichzeitig erfolgt die Elektrifizierung in den Endverbrauchssektoren langsamer. Allerdings wird die Klimaneutralität im Jahr 2045 auch hier erreicht. Das Ziel einer stärkeren Importunabhängigkeit ist in dieser Welt weniger stark gewichtet und (ggü. dem Status quo stärker diversifizierte) Energieimporte spielen mittel- bis langfristig eine größere Rolle als im Elektronenszenario. Dieses Szenario bildet nicht nur einen anderen Pfad ab, sondern auch einen etwas anderen Endpunkt des technischen Systems. Allerdings ist festzuhalten, dass auch dieses Szenario eine starke Elektrifizierung und eine hohe Energieeinsparung beinhaltet.

Für die kommunale Wärmeplanung in Glandorf wird das **Elektronen-Szenario als bundesweites Energiemarktszenario** zugrunde gelegt. Das bedeutet, die Welt der Zukunft wird überwiegend elektrisch sein, (grünes) Gas wird eher eine untergeordnete Rolle spielen. Dies hat eine Reihe Konsequenzen für die Zielformulierung und die Entwicklungspfade dort hin:

- Es rückt beispielsweise aus den KuTeK der Gaskessel als eine der vier Basis-Technologien weiter in den Hintergrund, als dies im Moleküle-Szenario der Fall gewesen wäre.
- Grüne Gase spielen in diesem Szenario demnach bundesweit in der Raumwärme keine bedeutende Rolle. In der logischen Konsequenz behalten Gasfernleitungsnetze und Gasverteilnetze für Erdgas bzw. grünes Methan und v. a. Wasserstoff langfristig lediglich eine Bedeutung für die Versorgung der Industrie und der Energiewirtschaft. Biomethan wird aufgrund anderer attraktiverer Vermarktungsoptionen nicht ins Gasverteilnetz eingespeist.
- Im Elektronen-Szenario wird ein Anstieg erneuerbarer, elektrischer Energien angenommen: Der bundesweite Ausbau von **Photovoltaik** und **Windkraft** schreitet stetig voran, die aktuellen Ausbauziele werden erreicht.
- Der Wärmemarkt im engeren Sinne ist gekennzeichnet durch eine Zunahme des Marktanteils von Wärmenetzen auf 26 % (bezogen auf den Wärmebedarf) bis zum Jahr 2045 und einem gleichzeitig starken Zuwachs an Wärmepumpen (Steigerung des Marktanteils auf 49 %). Im Vergleich zum Molekülszenario, welches weniger auf Elektrifizierung setzt und damit gleichzeitig auf einen geringeren Ausbau der Wärmenetze, ist der im Elektronen-Szenario ausgewiesene Ausbau an Wärmenetzen als ambitioniert zu betrachten.

3.3.1.2 Ergebnisse

Die Ergebnisse der wirtschaftlichen Betrachtung aus Sicht der Endkunden zeigen die folgenden Darstellungen. Es sei zur Interpretation der Darstellungen angemerkt, dass die Preise nicht inflationiert sind, sondern dass es sich um "reale" Beträge, also Werte in der Zukunft vergleichbar mit den heutigen Preisen, handelt. Außerdem enthalten die Preise keine Mehrwertsteuer.

Für die grünen Gase in Glandorf wird zunächst angenommen, dass ein Teil der überregionalen Erdgasinfrastruktur für grüne Gase (grünes Methan) zur Verfügung steht.

Wasserstoff wird absehbar in Glandorf nicht zur Verfügung stehen und würde auch aufgrund des Aufwands für die Umrüstung der Verbrauchsgeräte und den Umbau des bestehenden Gasnetzes keine Alternative darstellen. Stattdessen wird perspektivisch eine überregionale Methanisierung in Deutschland angenommen, die den Wasserstoff in synthetisches Methan umwandelt, welches dann zur Lieferung der Restgasmengen in einem deutlich reduzierten Gasverteilnetz für die verbleibenden Endkunden zu Verfügung steht (weitere Ausführungen in 2.3.3 und 3.3.2.2).

Preislich wird dies wie folgt berücksichtigt: Bis zur Fertigstellung des H₂-Backbones und entsprechender Methanisierungsanlagen wird Biomethan als grünes Gas für die Erfüllung der Anforderungen des GEG verwendet. Während eines Übergangszeitraums wird das Biomethan sukzessive durch synthetisches Methan ersetzt. Der Großhandelspreis ergibt sich dann am anlegbaren Preis, also orientiert sich auch an anderen konkurrierenden Gasen (Wasserstoff, Biomethan etc.).

Da die Verfügbarkeit und der Preis grünen Gases (gilt für alle Arten, d. h. Biomethan, Wasserstoff, synthetisches Methan) aus aktueller Sicht nur mit groben Annahmen ermittelt werden können, sind diese Annahmen im Rahmen der Verstetigungs- und Controllingprozesse bzw. der 5-jährigen Überprüfung der kWP zu validieren und die Szenarien ggf. anzupassen.

Die nachfolgende Abbildung zeigt zunächst die Preisverläufe für die unterschiedlichen Energieträger, die in den betrachteten Versorgungslösungen zum Einsatz kommen. Die Preisverläufe basieren auf dem Energiemarktszenario KN 45-E. Sie beinhalten neben dem (Großhandels)-Marktpreis des Energieträgers zusätzliche Preiskomponenten wie z. B. Netzentgelte, Steuern und Abgaben, die für die lokale Nutzung des Energieträgers im Gebäude anfallen. Die Gasnetzentgeltentwicklung wurde aus einer starken Reduktion der Gasmengen abgeleitet (konsistent zu den Entwicklungen in Deutschland im Elektronen-Szenario), wodurch sich die Netzentgelte real bis 2040 mehr als versechsfachen und bis 2045 sogar fast verzwanzigfachen würden. Hierbei ist jedoch fraglich, wie viele Kunden bei so hohen Netzentgelten noch Gas aus dem Gasnetz beziehen und ob der Gasnetzbetrieb noch wirtschaftlich darstellbar ist oder ob dieser Entwicklung mit politischen Maßnahmen entgegengewirkt wird.

Außerdem ist zu berücksichtigen, dass die Energieträger in unterschiedlichem Umfang für die Wärmeerzeugung benötigt werden. Für die Bereitstellung einer kWh Wärme über eine Wärmepumpe ist ein geringerer Energieeinsatz (Stromeinsatz) erforderlich als bei Gasen oder Pellets in den jeweiligen Versorgungslösungen. Auch wenn diese Strompreise im Zeitverlauf Schwankungen unterliegen, so zeigt sich, dass die effektiven Veränderungen im Vergleich zu den heutigen Preisen im Rahmen bleiben. Es ergibt sich über die nächsten 20 Jahre mit Ausnahme der Gaspreise keine Änderung der Reihenfolge der Preise: Während Strom- und Biomassepreise leicht bis moderat ansteigen, zeigen die unterschiedlichen Gase die größte Preissteigerung:

- Erdgas (gelb gepunktet) sieht von 2025 bis 2045 eine Steigerung von ca. 400 %,
 v. a. aufgrund steigender Gasnetzentgelte infolge des sinkenden Absatzes insgesamt und der steigenden CO₂-Preise.
- Der "Mischgaspreis (vor kWP, inkl. CO₂)" (gelb gestrichelt) bildet die Anforderungen des GEG § 71 Absatz 9 ab, die für Gaskessel gelten, die nach dem 01.01.2024 und vor Frist der kommunalen Wärmeplanung in Glandorf (30.06.2028) eingebaut wurden. Gut sichtbar sind die Stufen zu den Jahren 2029, 2035 und 2040 zu denen Steigerungen des Anteils grüner Gase vorgeschrieben

- sind. Hier ist durch den hohen Preis für grünes Methan und die steigenden Gasnetznutzungsentgelte eine Steigerung bis 2045 um einen Faktor 4,7 im Vergleich zu 2025 erkennbar.
- Der "Mischgaspreis (nach kWP, inkl. CO₂)" (gelb durchgezogen) repräsentiert den Endkunden-Gaspreis, der nach GEG § 71 Absatz 1 für neue Gasheizungen gilt, die nach Frist der kommunalen Wärmeplanung in Glandorf gilt (30.06.2028). 2025 läge dieser Preis bereits 3,4 ct/kWh oberhalb des Erdgaspreises. Da ab 2040 auch 100 % grünes Gas (bzw. nach den oben getroffenen Annahmen in Glandorf grünes Methan) verfeuert werden müssen, ist langfristig der gleiche Preis wie beim Mischgas (vor kWP) zu erkennen.

Holzpellets erfahren eine Preissteigerung von 43 %. Die Preise für Strom, ob als Haushaltsstrom oder für Wärmepumpen, pendeln in naher Zukunft nach unten durch, steigen dann jedoch bis 2045 wieder etwas über das heutige Niveau.

Hervorzuheben ist, dass ab 2036 der Strom für Wärmepumpen günstiger ist als für Gas, das dann (nach kWP) zu 65 % aus grünem Methan besteht. Ab 2040 ist das nach GEG zu verwendende Gas zu 100 % grünes Methan und ab 2041 dann sogar teurer als Haushaltsstrom. Dabei ist zusätzlich zu erwähnen, dass eine Wärmepumpe viel effizienter ist als ein Gaskessel, wodurch die bedarfsgebundenen Kosten (für Brennstoff/Strom) für die Wärmepumpe wesentlich niedriger sein werden. Dieser Aspekt wird in den folgenden Grafiken noch ersichtlich.

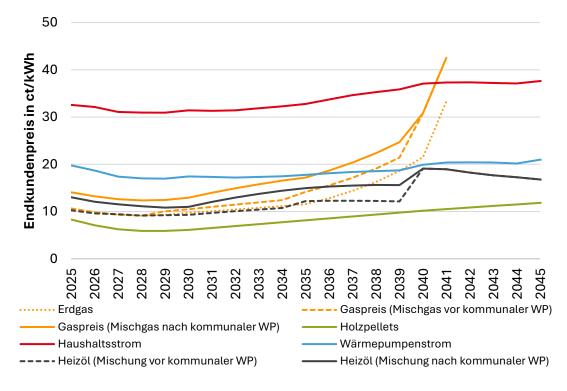


Abbildung 41: Variable Kosten der Endkunden in ct/kWh (real 2025, ohne MwSt.)

Aufgrund der erwarteten, aus Endkundensicht stark steigenden Gaspreise ist fraglich, wie viele Kunden künftig noch Gas nutzen werden. Durch den zu erwartenden Rückgang der Abnahmemengen steigen die Netzentgelte deutlich an, wodurch der Weiterbetrieb des Erdgasnetzes zunehmend unsicherer wird. Aus diesem Grund werden die Kostenkurven für gasbasierte Technologien in den folgenden Abbildungen nur bis zum Jahr 2041 dargestellt.

Es soll hier nochmals darauf hingewiesen werden, dass etwa eine Kilowattstunde Strom eine andere "Wärmemenge" erzeugt als beispielsweise eine Kilowattstunde Gas. Deshalb sind die Endkundenpreise für die Energiearten direkt nicht aussagekräftig, wenn es darum geht, die günstigste Heiztechnologie zu ermitteln.

In den folgenden Abbildungen werden deswegen für die am häufigsten vertretenen Gebäudetypen die **Wärmevollkosten** dargestellt, d. h. diejenigen Kosten, die unter Berücksichtigung aller Kostenbestandteile für die Bereitstellung der Wärme durch die betrachtete Versorgungslösung entstehen. Dabei sind zunächst vier der in Glandorf am häufigsten vertretenen Gebäudetypen dargestellt:

- Einfamilienhaus D bis F,
- Kleines Mehrfamilienhaus/Nichtwohngebäude A+ bis C und
- Mittleres Mehrfamilienhaus/Nichtwohngebäude A+ bis C und
- Großes Mehrfamilienhaus/Nichtwohngebäude A+ bis C.

Die Darstellung der Wärmevollkosten aller Typgebäude sind im Anhang in Abschnitt 6.4 zu finden.

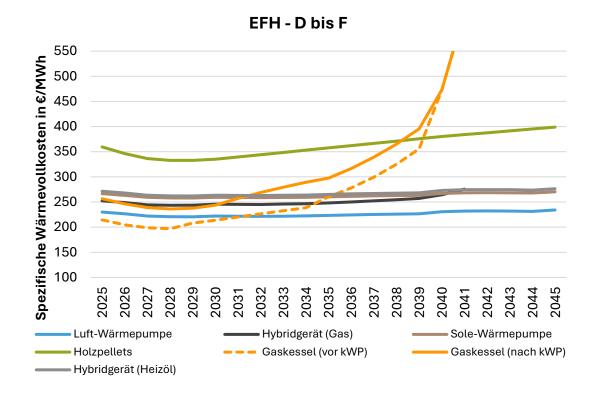


Abbildung 42: Wärmevollkosten je Technologie für ein Einfamilienhaus - D bis F (real 2025, ohne MwSt.)

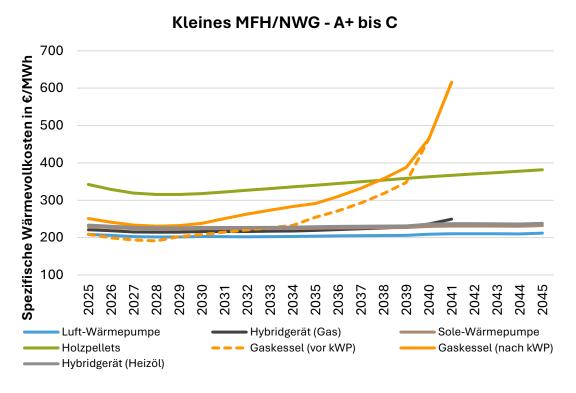


Abbildung 43: Wärmevollkosten je Technologie für ein kleines Mehrfamilienhaus – A+ bis C (real 2025, ohne MwSt.)

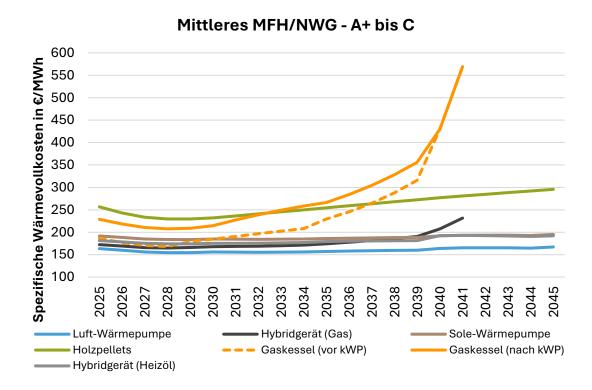


Abbildung 44: Wärmevollkosten je Technologie für ein mittleres Mehrfamilienhaus – A+ bis C (real 2025, ohne MwSt.)

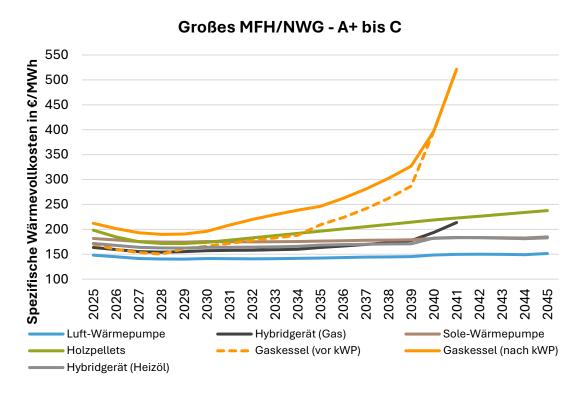


Abbildung 45: Wärmevollkosten je Technologie für ein großes Mehrfamilienhaus – A+ bis C (real 2025, ohne MwSt.)

Insgesamt zeigt sich, dass die Wärmevollkosten der betrachteten Technologien, analog zu den Energiepreisen, bis 2045 real moderat steigen. Ausnahmen sind hier die Gaskessel (vor und nach kWP), bei denen die Kosten aufgrund der steigenden Gas-Netzentgelte und der zunehmenden Anteile von grünem Methan stärker steigen.

In vielen Gebäudetypen ist der "Gaskessel vor kWP" zu Beginn noch knapp die günstigste Technologie, wobei dieser nach Ablauf der Frist für die Erstellung der kommunalen Wärmeplanung in Glandorf (30.06.2028) so nicht mehr neu eingebaut werden darf. Nach dieser Frist ist alternativ der "Gaskessel nach kWP" möglich, wobei dieser in allen Fällen teurer als das Hybridgerät und meist auch teurer als die Luft-Wärmepumpe ist. Zu beachten ist, dass dieser Gaskessel aufgrund der steigenden Gas-Netzentgelte und der steigenden Anteile grünen Methans immense Kostensteigerungen mit sich bringt, was dazu führt, dass langfristig alle anderen Technologien günstiger sind.

Nach diesem Gaskessel bzw. langfristig ist meist die Luft-Wärmepumpe oder das Hybridgerät günstiger. Das Hybridgerät ist v. a. bei größeren Gebäuden bzw. bei schlechterer Energieeffizienzklasse interessant, da dort die Einsparungen in den Kosten aufgrund der kleiner dimensionierbaren Wärmepumpe stärker sichtbar sind.

Der Pelletkessel ist meist sehr teuer. Nur bei Gebäuden mit hohem Wärmebedarf zeigt sich der Skaleneffekt in den Investitionskosten, wodurch der Pelletkessel wirtschaftlich interessanter wird. Allerdings ist auch der größere Platzbedarf für die Pelletlagerung zu berücksichtigen.

Die Sole-Wärmepumpe kann sich aufgrund der hohen Investitionskosten und nur leicht besseren Effizienz kaum durchsetzen. Hinzu kommt, dass aufgrund der hohen Kosten schnell die aktuell gültige Deckelung der BEG-Förderung greift und so die Förderung stärker begrenzt ist.

Die Nutzung eines neuen Gaskessels ist, aufgrund der ab 2028 erwartbaren Kostensteigerungen (abhängig vom Gebäudetyp), spätestens ab 2031 im Vergleich zu Wärmepumpen teurer.

Somit lässt sich zusammenfassen, dass in vielen Typgebäuden mittel- und langfristig Wärmepumpenlösungen, v. a. Luft-Wärmepumpen mit und ohne Gaskessel wirtschaftlich am interessantesten sind. Selbst wenn ein Gasnetz verfügbar sein sollte, wäre bei Verzicht auf den Gaskessel nur mit begrenzten Mehrkosten zu rechnen.

Je nach Gebäudetyp kann auch die Nutzung eines Pelletkessels günstiger sein. Hierbei ist jedoch die langfristige Verfügbarkeit der Pellets unsicher und wegen der Nutzungskonkurrenz zu grünen Gasen auch die zukünftigen Preise. Pellets sind nur in Ausnahmefällen regional oder lokal verfügbar. Zusätzlich ist die Prüfung der Verfügbarkeit von Flächen für die Aufstellung eines Pelletbehälters erforderlich.

Die Attraktivität der Technologien wird weiter als Input für die Modellierung des Heizungswechsels in Abschnitt 3.3.3 verwendet.

Fazit:

Die Gasheizung ist heute in vielen Fällen noch die günstigste Lösung, jedoch kehrt sich diese Tendenz schon bis 2030 ins Gegenteil.

Je nach Gebäudetyp ist i. d. R. die Luft-Wärmepumpe oder das Hybridgerät (bei gegebenem Anlass bereits ab sofort) durchgängig die Vorzugslösung für dezentrale Heizwärmesysteme.

3.3.2 Zukünftige Wärmenetz- und Gasnetzinfrastruktur

3.3.2.1 Wärmenetze

3.3.2.1.1 Methodik

Die Untersuchung möglicher, zukünftiger Wärmenetze erfolgt aus zwei Richtungen:

Im Rahmen der **Wärmebedarfsermittlung** werden zunächst Wärmenetze skizziert (d. h. planerisch grob entworfen), die sich auf Basis der Wärmeliniendichten besonders für eine Wärmeversorgung eignen. Dort, wo Wärmeliniendichten von über 2.000 kWh/m (vgl. KEAN, eigene Berechnungen) ermittelt wurden und relativ "zusammenhängend" auftreten, sind Wärmenetze grundsätzlich technisch-wirtschaftlich zu prüfen.

Aus der **Potenzialanalyse** und den Stakeholder-Gesprächen haben sich zudem Erzeugungspotenziale ergeben, die eine Errichtung dieser denkbaren Netzinfrastruktur mittragen können, da langfristig eine treibhausgasneutrale und wirtschaftliche Wärmeerzeugung gegeben sein muss.

Diese beiden Analyseergebnisse werden miteinander verschnitten und es ergeben sich mögliche (Fern-)Wärmenetzgebiete.

Sodann wird eine nähere **Bewertung der skizzierten Wärmenetze als Fokusgebiete** vorgenommen. Dies umfasst:

- die Kostenbetrachtung der Wärmenetze selbst (also v. a. die Kosten für die Errichtung) einschließlich der
- Bewertung der korrespondierenden Erzeugung (unter Vollkostengesichtspunkten) sowie
- die Beachtung von "Nebenbedingungen" aus dem Wissen um die konkreten **Gegebenheiten vor Ort**.

Im Ergebnis werden Wärmenetze abgeleitet, die realistisch erschließbar sind. Die eventuellen Herausforderungen und Hemmnisse für den Ausbau der Infrastruktur werden in dem Zuge jeweils benannt.

3.3.2.1.2 Ergebnisse

Für die Gemeinde Glandorf haben sich vorrangig nachfolgende Gebiete (vgl. Abbildung 46) als geeignete Areale für die Errichtung von Wärmenetzen herauskristallisiert. In der Abbildung sind die vollständigen Wärmenetzgebiete aufgezeigt, unabhängig vom Anteil am Wärmebedarf (im Gegensatz zu Abbildung 54 bis Abbildung 57, die die Baublock scharfen Darstellungen der voraussichtlich vorrangigen Versorgungstechnologien zeigen):

- Ortskern Glandorf: Der süd-westliche Bereich im Ortskern Glandorf bietet sich aufgrund erhöhter Wärmeliniendichten für den Aufbau eines Wärmenetzes an.
 Für die Erzeugung stehen als mögliche Quellen zur Verfügung:
 - Wärmelieferung aus bestehender und zu erweiternder Biogasanlage "S. Athenia" und/oder Biogasanlage "Bioline". Zur Realisierung der Wärmelieferung durch die Biogasanlage "Bioline" müsste eine rund 0,35 km lange Transportleitung errichtet werden.
 - Als Option steht die Nutzung der Abwärme aus der Kläranlage mittels einer Wärmepumpe zur Verfügung.
- Erweiterung Ortskern: Gewerbegebiet im östlichen Teil des Ortskerns Glandorfs. Für die Erzeugung stehen als mögliche Quellen zur Verfügung:
 - Wärmelieferung aus bestehender und zu erweiternder Biogasanlage "S. Athenia" und/oder Biogasanlage "Bioline". Zur Realisierung der Wärmelieferung durch die Biogasanlage "Bioline" also auch durch die Biogasanlage "S. Athenia" müsste jeweils eine rund 0,15 km lange Transportleitung errichtet werden.
 - Als Option steht die Nutzung der Abwärme aus der Kläranlage mittels einer Wärmepumpe zur Verfügung.

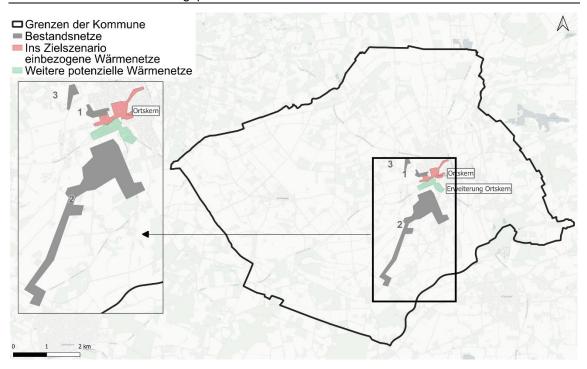


Abbildung 46: Darstellung der bestehenden, der ins Zielszenario einbezogenen und der potenziellen Wärmenetze für Glandorf¹

Die Netze "Ortskern" und "Erweiterung Ortskern" haben sich als potenziell geeignet herausgestellt. Im Gebiet des Netzes "Ortskern" können Bereiche erschlossen werden, die erhöhte Wärmeliniendichten aufweisen und bei denen v. a. dezentrale Wärmepumpen-Lösungen aufgrund der engen Platzverhältnisse herausfordernd sind. Außerdem sind die überschlägig ermittelten Kosten für die Wärme aus dem Wärmenetz "Ortskern" aus Sicht der Endkundinnen und Endkunden interessant im Vergleich zu den ermittelten Kosten aus den Vergleichskostenrechnungen der dezentralen Versorgungsoptionen (KuTeK-Berechnungen). Dafür wurde für die Durchmischung der Typgebäude für die potenziellen Wärmenetzgebiete ein Vergleichspreis für Konkurrenztechnologien (Luft-Wärmepumpe, Hybridgerät, Sole-Wärmepumpe, Pelletkessel, Gaskessel nach kWP) ermittelt und den Wärmekosten aus den potenziellen Wärmenetzen gegenübergestellt. Nur in den Gebieten, wo Wärmenetze günstiger sind als die dezentralen, mit Vollkosten gerechneten Technologien, werden Wärmenetze dargestellt. Wärmenetze rechnen sich aber erst mit hohen Anschlussgraden, die i. d. R. größer als 80 % angenommen wurden. Das bedeutet, dass sich vier von fünf potenziellen Endverbrauchern in einem Wärmevorranggebiet für einen Anschluss an die leitungsgebundene Wärmeversorgung entscheiden müssen, damit ein solches Wärmenetz wirtschaftlich zu betreiben ist. Folglich wurde eine Erschließung des Netzes "Ortskern" im Zielszenario berücksichtigt. Es grenzt an die leitungsgebundene Wärmeversorgung der Schule und des Hallenbades durch die Biogasanlage Athenia an. Das Netz "Erweiterung Ortskern" wurde dagegen nicht ins Zielszenario einbezogen, da es im wirtschaftlichen Vergleich mit den Kosten aus den KuTeK-Berechnungen weniger attraktiv ist. Des Weiteren wurde ein Wärmenetz im

Ortsteil Schwege im Laufe der Untersuchungen als unattraktiv eingestuft. Eine detailliertere Untersuchung sollte dann im Rahmen einer (BEW-geförderten) Machbarkeitsstudie erfolgen, die dann den Bereich "Ortskern" und die "Erweiterung Ortskern" umfassen kann.

3.3.2.2 Gasnetze

Wie bereits oben beschrieben, wird in dem Zielszenario v. a. aufgrund von Preisrisiko und der Unklarheit der Verfügbarkeit davon ausgegangen, dass Gase langfristig keine Rolle mehr in der dezentralen Wärmeversorgung spielen, wobei aus heutiger Sicht keine Klarheit über die Stilllegung des Gasnetzes in der Fläche besteht. Ein flächiger Weiterbetrieb des Gasnetzes wird zur Versorgung der dezentralen Endkunden im Zielszenario nicht berücksichtigt, sondern stattdessen lediglich ein Weiterbetrieb der Teile des Gasnetzes, welche für die Versorgung der wenigen Prozesswärme-Kunden und Wärmeerzeugungsanlagen für Wärmenetze notwendig sind. Hierbei sind folgende Punkte zu beachten: Aufgrund der unsicheren Verfügbarkeit und Preislage sind Prognosen schwer möglich und wurden aus heutiger Sicht bestmöglich getroffen. Dies betrifft sowohl die Preisentwicklung des Gases selbst als auch die Netzentgelte. Eine dezidierte Wirtschaftlichkeitsbetrachtung des Gasnetzbetriebs ist nicht durchgeführt worden, weder für den Weiterbetrieb des reduzierten Netzes für die Prozesswärme-Kunden und Wärmeerzeugungsanlagen für Wärmenetze noch für die dezentrale Versorgung. Es kann sich bei zukünftiger, detaillierter Betrachtung ergeben, dass bestimmte Netzbereiche zukünftig aufgrund von wirtschaftlichen Gesichtspunkten möglicherweise doch weiter betrieben oder andere Teile eben nicht weiter betrieben werden können. Diese Untersuchungen überschreiten jedoch den Rahmen der kommunalen Wärmeplanung, weshalb hier zunächst davon ausgegangen wird, dass das Gasnetz zum überwiegenden Teil spätestens ab 2040 stillgelegt ist. Zur Rolle von Biomethan (lokal oder regional erzeugt) sei auf den Abschnitt 2.3.3 verwiesen.

Eine Umwidmung des bestehenden Erdgasnetzes auf Wasserstoff wird nicht in Betracht gezogen, aufgrund des Aufwands und der damit verbundenen Kosten – z. T. müssten Komponenten im Verteilnetz und bei den Endkunden ausgetauscht werden, aber auch Parallelleitungen errichtet werden. Ein direkter Bedarf an Wasserstoff aus dem Sektor Industrie oder Gewerbe konnte nicht identifiziert werden, so dass der Umrüstungsaufwand in Relation zu den geringen Mengen, die zu erwarten sind, zu hoch wäre.

Stattdessen wird für die verbleibenden Restmengen für die Prozesswärme und Spitzenlasterzeugung für die Wärmenetze perspektivisch eine Methanisierung (in Deutschland) angenommen, die Wasserstoff in synthetisches Methan umwandelt, oder es wird alternativ direkt synthetisches Methan importiert. Wird sichergestellt, dass bilanziell kein CO₂ oder Methan in die Atmosphäre gelangt, ist dieses synthetische Methan CO₂-neutral. Zudem ist es bei ausreichender Qualität direkt austauschbar mit Erdgas, was bedeutet, dass sukzessive steigende Anteile eingespeist werden können. Darüber hinaus

wird angenommen, dass diese Gasmengen über weiterhin betriebene Gasleitungen bis nach Glandorf geleitet werden. Damit steht für die geringen verbleibenden Gasmengen grünes Methan zur Verfügung.

3.3.3 Entwicklung der Wärmeversorgung

Transformationsmodell

Das Herzstück der kommunalen Wärmeplanung ist die – sich aus den Vorbetrachtungen zusammenfassend ergebende – Entwicklung der Wärmeversorgung. Hier wird modellhaft die Frage beantwortet, wann welches Gebäude zu welcher Technologie wechselt. Auch hier gilt: Es handelt sich nicht um Empfehlungen, Entscheidungen, Vorfestlegungen oder gar Vorschriften für einzelne Gebäude, sondern (technisch gesprochen) um eine Simulation, die auf dem Gebäudebestand der Gemeinde aufsetzt, ohne die tatsächliche, individuelle Zukunft eines einzelnen Gebäudes bestimmen zu wollen oder zu können. Wichtig ist auch hier, dass die Verteilung der Präferenzen der Endkunden bzw. Gebäude modellhaft abgebildet wird wie Eignung einer Technologie für das Gebäude oder wirtschaftliche Attraktivität für den Endkunden. Dies ist mit dem anschließend beschriebenen Modell sichergestellt.

Das Modell fußt erneut auf dem Wärmeatlas und zieht weitere Parameter für die Simulation Abbildung der "individuellen" Technologiewechsel hinzu. Diese Parameter sind:

- Heizungsalter
- Vorhandensein von Etagenheizungen
- Lage des Gebäudes in einem Wärmenetzgebiet
- Heizungswechselrate (hier wird angenommen, dass bis 2040 alle Heizungen gewechselt werden)
- Mindestalter für Heizung, damit ein Wechsel überhaupt berücksichtigt wird:
 20 Jahre
- Durchschnittliches Alter für den Heizungswechsel: 30 Jahre
- Einhaltung der Vorgaben des GEG bei einem Technologiewechsel

Aus dem Wärmeatlas werden zunächst alle gebäudespezifischen Parameter zusammengetragen: Das jeweilige **Alter** der vorhandenen Heizungsanlage, die Frage, ob **Etagenheizungen** im Gebäude vorhanden sind oder nicht ergeben eine individuelle Ausprägung jedes Gebäudes mit seinen jeweiligen Eigenschaften. In Kombination mit der jeweiligen Lage des Gebäudes mit Blick auf die Frage, ob es in einem **Wärmenetzneuoder -ausbaugebiet** bis 2045 liegt, sind alle relevanten Gebäudeparameter erfasst. Die Parameter werden jeweils normiert und gewichtet. Auch hier wird über einen Zufallsalgorithmus die Unsicherheit simuliert, dass Gebäudeeigentümerinnen und Gebäudeeigentümer selbst entscheiden und sich nicht rational voraussagen lässt, welches Gebäude wann die Heizung wechseln wird. Daraus ergibt sich die "**Heizungswechselaffinität**". Abhängig von der Anzahl der Gebäude, welche in dem Zeitintervall (z. B. 2025-

2030) ihre Heizung wechseln, werden die Gebäude mit der höchsten Heizungswechselaffinität ausgewählt.

Für die Entscheidung, zu welcher **Heizungstechnologie** gewechselt wird, werden folgende Parameter berücksichtigt:

- Eignung für Luft-Wärmepumpen (aus der Potenzialanalyse)
- Eignung für Hybridgeräte (analog zu Luft-Wärmepumpe nur mit kleinerem Außengerät)
- Eignung für Sole-Wärmepumpen (aus der Potenzialanalyse)
- Zukünftige Wärmenetzgebiete und dazugehörige, angenommene Baujahre
- Pelletkessel werden aufgrund des hohen Platzbedarfs für den Pelletbehälter nur dort eingebaut, wo heute bereits Heizöl verwendet wird oder wo in 2040 keine andere Heizungsoption möglich ist.
- Es werden keine neuen Gaskessel und Hybridgeräte, die auf einer leitungsgebundenen Gasversorgung basieren, eingebaut, um zu vermeiden, dass diese bis 2040 erneut ausgetauscht werden müssen. Dies antizipiert eine entsprechende Mitwirkung der Kunden bzw. Kommunikation des Gasnetzbetreibers. Als Ausnahme davon wird eine weitere Option berücksichtigt: In Fällen, wo keine andere Heizungstechnologie als ein Neugerät einsetzbar ist, aber die Platzverhältnisse dies zulassen, werden Hybridgeräte berücksichtigt. Neben der Wärmepumpe wird dann ein Gaskessel berücksichtigt, in dem statt Erdgas und synthetischem Methan dann Flüssiggas (nicht leitungsgebunden) für die Spitzenlast
 - eingesetzt wird. Im Jahr 2040 wird angenommen, dass diese geringen Mengen (je Hybridgerät ca. 10 % der Wärmemenge) durch grünes Flüssiggas bereitgestellt werden.
- Für die industriellen bzw. gewerblichen Großverbraucher, die Prozesswärme benötigen, wird von einer Umstellung auf grünes Methan im Jahr 2035 mit steigenden Anteilen bis 2040 ausgegangen. Dies gilt ebenso für die Spitzengaskessel, die bei der Versorgung der zukünftigen Wärmenetze zum Einsatz kommen.
- Wechselraten basierend auf den Preiszeitreihen der KuTeK: Dabei wird davon ausgegangen, dass die Endkundinnen und Endkunden v.a. zur günstigsten Technologie wechseln, jedoch auch gewisse Mehrkosten tolerieren und sich subjektiv eher für die zweit- oder drittgünstigste Technologie entscheiden. Je günstiger die Technologie, desto höher ist die Wechselrate zu dieser.
 - Dabei wird aufgrund der verpflichtenden Energieberatung vor dem Einbau einer neuen Gasheizung davon ausgegangen, dass eine gewisse Vorausschau der Endkundinnen und Endkunden geschieht, d. h. es werden die preislichen Veränderungen der nächsten zehn Jahre bereits in die Heizungswahl einbezogen.

All diese Parameter, Faktoren und Bedingungen werden kombiniert und mit Zufallszahlen überlagert, um die "individuelle Entscheidung" für eine Technologie zu treffen.

<u>Treibhausgasemissionen</u>

Der Pfad der technischen Entwicklung der Wärmeversorgung ist damit abgebildet. Die Wirkung der Transformation auf die **Treibhausgasemissionen** ist noch zu beschreiben (Anpassung an den Leitfaden des BMWK). Hierfür wird (analog zur Bestandsanalyse) eine Umrechnung des Wärmebedarfs in Endenergieverbrauch mit technologiespezifischen Wirkungsgraden vorgenommen.

Daraus werden sodann unter Zuhilfenahme von zukünftigen Emissionsfaktoren (aus den Leitfäden vom BMWK/BMWSB¹², der KEA-BW¹³ (Mittelung der Werte von 2030 und 2040 für 2035 und Extrapolation für 2045) und dem GEG (für Flüssiggas)) die Treibhausgas-Emissionen berechnet. Für grünes Flüssiggas wird als Abschätzung der doppelte Emissionsfaktor wie für synthetisches Methan angesetzt.

Für die Treibhausgasemissionen der neuen Wärmenetze wird der oben beschriebene Erzeugungsmix angesetzt. Für bestehende Wärmenetze wird der vorliegende Erzeugungsmix verwendet. Die Emissionen werden (analog zu den Emissionen der dezentralen Wärmeerzeuger) mit den oben genannten Emissionsfaktoren bewertet.

Ergebnisse

Diese Analysen dienen dem Zweck, die Anforderungen aus § 17 Abs. 1 WPG zu erfüllen:

"Im Zielszenario beschreibt die planungsverantwortliche Stelle **für das beplante Gebiet als Ganzes** anhand der Indikatoren nach Anlage 2 Abschnitt III die **langfristige Entwicklung der Wärmeversorgung**, die im Einklang mit der Einteilung des beplanten Gebiets in voraussichtliche Wärmeversorgungsgebiete nach § 18, der Darstellung der Wärmeversorgungsarten für das Zieljahr nach § 19 und mit den Zielen dieses Gesetzes stehen muss."

Anlage 2 Abschnitt III:

III. Zielszenario nach § 17

Das Zielszenario nach § 17 beschreibt anhand der nachfolgenden Indikatoren, wie das Ziel einer auf erneuerbaren Energien oder der Nutzung von unvermeidbarer Abwärme basierenden Wärmeversorgung erreicht werden soll. Die Indikatoren sind, soweit nicht im Folgenden etwas anderes bestimmt wird, für das beplante Gebiet als Ganzes und jeweils für die Jahre 2030, 2035, 2040 und 2045 anzugeben. Die Indikatoren sind:

- der j\u00e4hrliche Endenergieverbrauch der gesamten W\u00e4rmeversorgung in Kilowattstunden pro Jahr, differenziert nach Endenergiesektoren und Energietr\u00e4gern,
- 2. die jährliche Emission von Treibhausgasen im Sinne von § 2 Nummer 1 des Bundes-Klimaschutzgesetzes der gesamten Wärmeversorgung des beplanten Gebiets in Tonnen Kohlendioxid-Äquivalent.
- 3. der jährliche Endenergieverbrauch der leitungsgebundenen Wärmeversorgung nach Energieträgern in Kilowattstunden pro Jahr und der Anteil der Energieträger am gesamten Endenergieverbrauch der leitungsgebundenen Wärmeversorgung in Prozent,
- 4. der Anteil der leitungsgebundenen Wärmeversorgung am gesamten Endenergieverbrauch der Wärmeversorgung in Prozent,
- 5. die Anzahl der Gebäude mit Anschluss an ein Wärmenetz und deren Anteil an der Gesamtheit der Gebäude im beplanten Gebiet in Prozent,
- der j\u00e4hrliche Endenergieverbrauch aus Gasnetzen nach Energietr\u00e4gern in Kilowattstunden pro Jahr und der Anteil der Energietr\u00e4ger am gesamten Endenergieverbrauch der gasf\u00f6rmigen Energietr\u00e4ger in Prozent,
- die Anzahl der Gebäude mit Anschluss an ein Gasnetz und deren Anteil an der Gesamtheit der Gebäude im beplanten Gebiet in Prozent.

Die nachfolgenden Grafiken beziehen sich auf die in diesem Abschnitt III geforderten Darstellungen.

Durch die Bedarfsreduktion sowie die Effizienzsteigerung durch Heizungswechsel geht der absolute Endenergieverbrauch für Wärme in Glandorf von heute ca. 84 GWh um ca. 31 % auf 58 GWh im Jahr 2045 zurück, siehe Abbildung 47Abbildung 47.

Neben dieser absoluten Bedarfsreduktion ändert sich der relative Energieträgereinsatz radikal: Stammen heute noch etwa 85 % der Wärmeenergie aus fossilen Quellen, so sind diese bis zum Jahr 2040 vollständig durch erneuerbare Energieträger substituiert.

Umweltwärme (29 %) sowie synthetisches Methan (31 %) werden die wichtigsten Quellen für die Rest-Wärmebedarfsdeckung in 2040 sein. Synthetisches Methan wird lediglich für die Prozesswärmebereitstellung verwendet. Weitere relevante Teile stellen Strom (17 %) sowie oberflächennahe Geothermie und Wärmenetze (11 % bzw. 9 %) zu etwa gleichen Teilen dar. Da Strom und Umweltwärme zusammen die Wärmepumpen repräsentieren, lässt sich daraus schließen, dass diese fast die Hälfte des Wärmebedarfs decken. Die Anteile an grünem Flüssiggas, grünem Heizöl sowie Biomasse sind in 2040 mit jeweils etwa 1 % fast zu vernachlässigen.

Außerdem fällt auf, dass sich die Entwicklung von Wärmebedarf und Endenergieverbrauch annähern: Im Status quo ist der Endenergieverbrauch aufgrund der Wirkungsgradverluste, v. a. in den Gas- und Heizölkesseln, um 25 % höher als der Wärmebedarf. Langfristig nähern sich die beiden Werte an, da v. a. Wärmepumpen sehr effizient arbeiten und auch die Wirkungsgrade der neuen Gaskessel über denen heutiger Bestandskessel liegen.

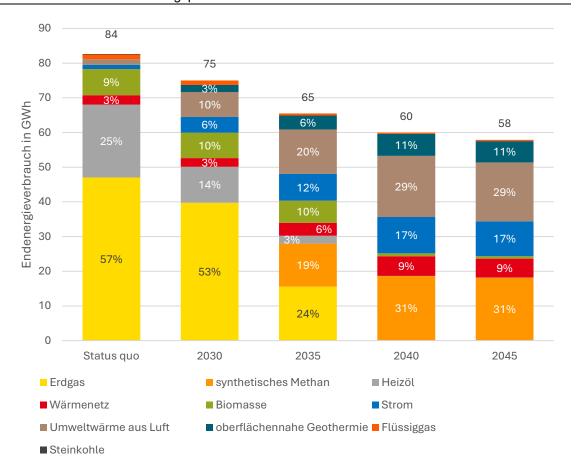


Abbildung 47: Endenergieverbrauch nach Energieträgern in Glandorf über die Zeit (Anlage 2, Nr. III. 1, 4 und 6)

Bei der Betrachtung der Entwicklung des Endenergiebedarfs in den einzelnen Sektoren findet eine Verlagerung nur marginal statt.

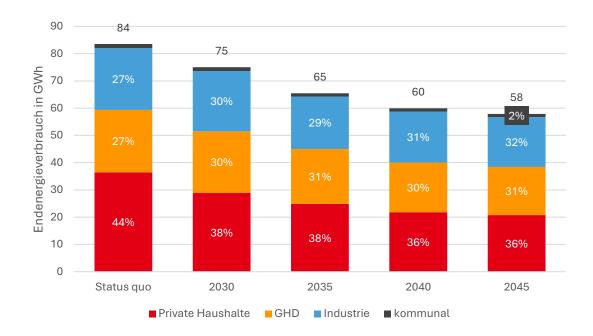


Abbildung 48: Endenergieverbrauch nach Sektoren in Glandorf über die Zeit (Anlage 2, Nr. III. 1)

Die korrespondierenden Treibhausgasemissionen sind durch die starke Dominanz von Gas und Öl in Glandorf im Wesentlichen ein 1:1-Abbild des Ausstiegs aus diesen beiden Technologien. Hier sei nochmal darauf hingewiesen, dass mit den Emissionsfaktoren aus dem WPG-Leitfaden aufgrund der Berücksichtigung der Vorkette auch in den Jahren 2040 und 2045 noch Restemissionen verbleiben. Die Emissionen werden jedoch um 94 bzw. 95 % reduziert.

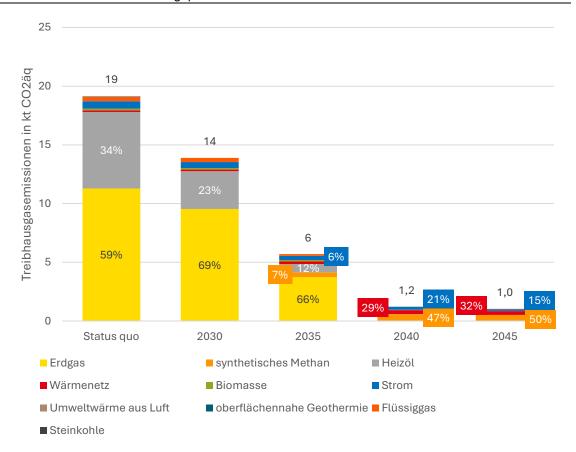


Abbildung 49: Treibhausgasemissionen nach Energieträgern in Glandorf über die Zeit (Anlage 2, Nr. III. 2)

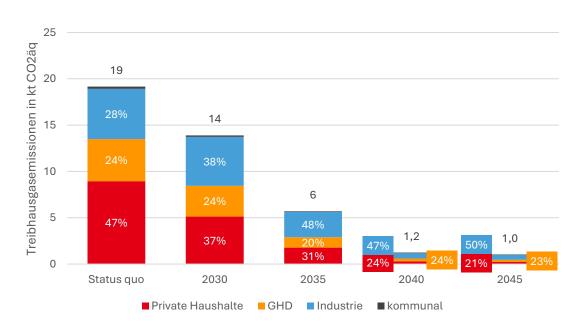


Abbildung 50: Treibhausgasemissionen nach Sektoren in Glandorf über die Zeit (Anlage 2, Nr. III. 2)

Durch den Ausbau von Wärmenetzen wird der Endenergieverbrauch in Wärmenetzen, also für die Erzeugung der Wärme in den Netzen, ansteigen.

Bis 2040 steigt der Endenergieverbrauch in Wärmenetzen auf bis zu 2,8 GWh an und sinkt anschließend aufgrund von Sanierungen der angeschlossenen Gebäude wieder leicht. Die nachfolgende Abbildung

Abbildung 51 zeigt für die identifizierten Wärmenetze die ermittelten Energieträger, mit denen diese Netze versorgt werden. Hier spielt besonders lokal erzeugtes Biogas eine große Rolle. Im Status quo wird noch Erdgas im Spitzenlastkessel verwendet, welches sukzessive auf Biogas bzw. treibhausgasneutrale Gase umgestellt wird. Dabei wurde bei KWK-Anlagen der Energieträgereinsatz mittels Carnot-Methode aufgeteilt.

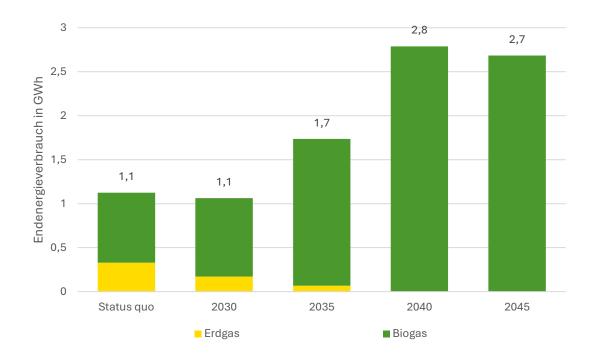


Abbildung 51: Energieträgereinsatz für Wärmenetze in Glandorf (Anlage 2, Nr. III. 3)

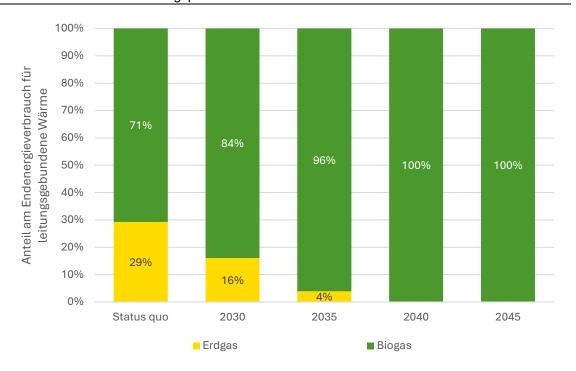


Abbildung 52: Anteil der Energieträger der leitungsgebundenen Wärmeversorgung am Endenergieverbrauch in Glandorf über die Zeit (Anlage 2, Nr. III. 3)

Heute sind in Glandorf über 800 Gebäude an das (Erd-) Gasnetz angeschlossen. Dies entspricht ca. 47 % der gesamten Gebäude im Gemeindegebiet. Der Wert wird der Berechnung nach bis 2040 auf nur wenige Anschlüsse zurückgehen. Diese Verbraucher müssen dann statt mit Erdgas mit synthetischem grünem Gas oder Biomethan beliefert werden. Bei den verbleibenden Gasverbrauchern handelt es sich ausschließlich um Verbraucher mit Prozesswärmebedarf.

Der Anteil der Gebäude, die über Wärmenetze versorgt werden, wird von 1 % im Status quo bis 2045 auf 6 % und über 100 Anschlüsse ansteigen.

Der Rest der Gebäude, die nicht über Gas- oder Wärmenetze versorgt werden, wird über nicht leitungsgebundene, dezentrale Technologien, überwiegend strombasierte Wärmepumpen oder Biomasse auf der Basis von Pellets versorgt werden.

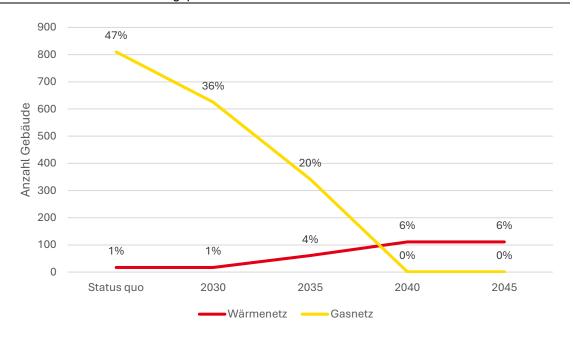


Abbildung 53: Anzahl und Anteil der Gebäude mit Anschluss an Wärmenetze bzw. an Gasnetze

3.3.4 Voraussichtliche Wärmeversorgungsgebiete und Wärmeversorgungsarten

Führt man die bisherigen Analysen zusammen, dann resultieren daraus die voraussichtlichen Wärmeversorgungsgebiete bzw. die Wärmeversorgungsarten.

Das "beplante Gebiet", also die Gemeinde Glandorf, wird dem § 18 WPG gemäß auf Grundlage der Bestandsanalyse und der Potenzialanalyse in voraussichtliche Wärmeversorgungsgebiete eingeteilt. Das Wärmeplanungsgesetz fordert dabei die Beachtung folgender Bedingungen:

- geringe Wärmegestehungskosten,
- · geringe Realisierungsrisiken,
- ein hohes Maß an Versorgungssicherheit und
- geringe kumulierte Treibhausgasemissionen.

Dem Gebot der Kostenminimierung wird durch die Verwendung der Kunden-Technologie-Kombinationen und der darauf basierenden Simulation der Technologiewechsel Rechnung getragen. Die erste Prüfung der Machbarkeit von Wärme- und Wasserstoffnetzen minimiert das Realisierungsrisiko. Die Versorgungssicherheit ist das erste Gebot jeder Netzplanung. Soweit möglich und sinnvoll, wird sie bei den Planungen hier mitgedacht, spielt jedoch dann in der konkretisierenden, technischen Planung eine größere Rolle. Die Minimierung der kumulierten Treibhausgasemissionen ist in den vorstehenden Überlegungen enthalten. Da die neuen Wärmenetze direkt mit treibhausgasneutraler Wärmeerzeugung aufgebaut werden, ist hier für eine Minimierung der Emissionen gesorgt. Die dezentralen Wärmeerzeuger werden außerdem ausschließlich durch

erneuerbare Wärmeerzeuger ausgetauscht. Die einzige Ausnahme ist der Gaskessel, welcher zu Beginn noch mit hohem Erdgasanteil beheizt wird. In der Praxis ist die Wahl der Technologie jedoch den Eigentümerinnen und Eigentümern selbst überlassen, wodurch hier nur eine begrenzte Einflussnahme bzgl. der Emissionsminimierung gegeben ist.

Zusätzlich zu den voraussichtlichen Wärmeversorgungsgebieten sind beplante Teilgebiete mit erhöhtem Energieeinsparpotenzial darzustellen. Dafür werden jene Baublöcke im Gemeindegebiet ausgewählt, die ein Sanierungspotenzial von über 200 MWh je Hektar Fläche aufweisen. Eine kartographische Darstellung erübrigt sich in Glandorf, da keine Teilgebiete dieses Kriterium erfüllen.

Die folgenden Kartendarstellungen zeigen die voraussichtlichen Wärmeversorgungsgebiete für die überwiegende (vorrangige) Technologie – also für die dezentrale Versorgung (blau) und für Wärmenetze (rot). Auch die (noch) vorrangige Versorgung mit Gas ist eingetragen. An dieser Stelle ist darauf hinzuweisen, dass dies nicht aussagt, ob in diesen Gebieten eine leitungsgebundene Wärmeversorgung oder eine Gasversorgung vorliegt. Die nachfolgenden Karten bilden die Entwicklung vom Status quo über die Stützjahre 2030, 2035 und 2040 ab. Es wird deutlich, wie die gelben vorrangig erdgasversorgten Gebiete, die heute klar dominieren, sukzessive durch die vorrangig roten Wärmenetze und die blauen Flächen, welche vorrangig dezentrale Wärmelösungen anzeigen, verdrängt werden. Wasserstoffnetzgebiete werden in Glandorf unter den derzeitigen Voraussetzungen und Aussichten nicht erwartet. Aufgrund des Aufwands und der damit verbundenen Kosten – z. T. müssen Komponenten ausgetauscht werden, aber auch Parallelleitungen errichtet werden – wird eine Umwidmung des bestehenden Erdgasnetzes auf Wasserstoff nicht in Betracht gezogen.

Die Darstellungen sind auf der Basis der Simulationen auf Gebäudeebene erstellt worden. Dabei sind die Energieträger in dem jeweiligen Jahr auf die zwei Baublockseiten jedes Straßenzugs aggregiert worden. Im Vergleich zur Darstellung nach einer Baublocksaggregation, die in der Bestandsanalyse (Abbildung 14) durchgeführt wurde, bieten die folgenden Grafiken eine detailliertere Darstellung, die eher der Versorgungsinfrastruktur (die i. d. R. in der Straße liegt) folgt. Die Farbgebung zeigt an, welcher Energieträger den größten Anteil am Endenergieverbrauch stellt. Für die dezentralen Lösungen sind alle nicht gas- oder wärmenetzgebundenen Energieträger zusammengefasst, d. h. alle Wärmepumpen, Nachtspeicherheizungen, Biomasse, Heizöl etc.

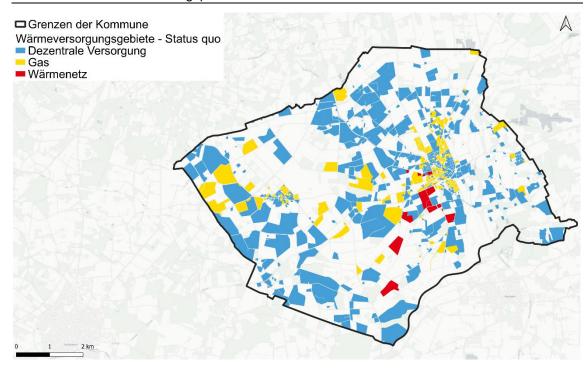


Abbildung 54: Vorrangige Wärmeversorgungsgebiete Status quo in Glandorf¹

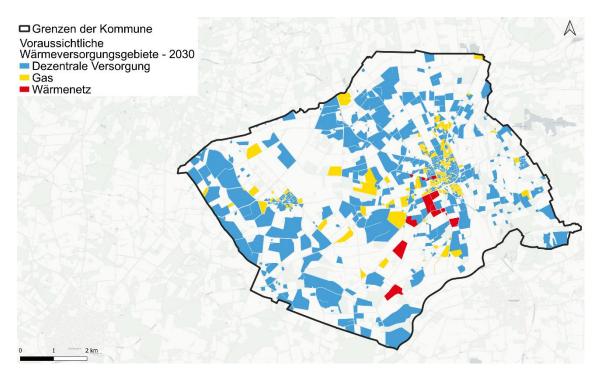


Abbildung 55: **Voraussichtliche, vorrangige** Wärmeversorgungsgebiete 2030 in Glandorf¹

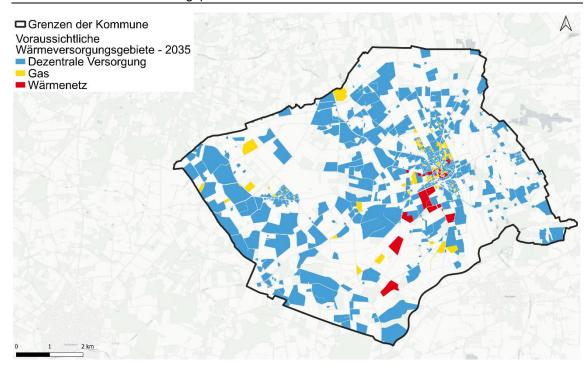


Abbildung 56: **Voraussichtliche, vorrangige** Wärmeversorgungsgebiete 2035 in Glandorf¹

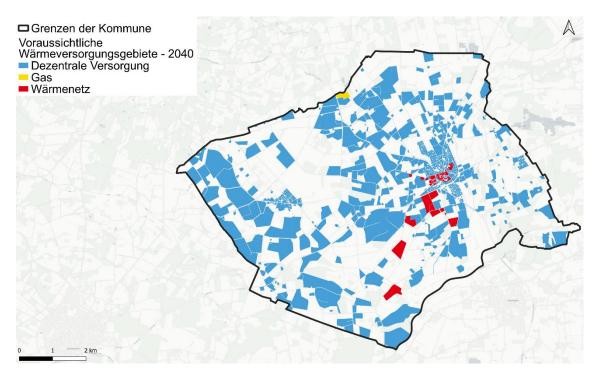


Abbildung 57: **Voraussichtliche, vorrangige** Wärmeversorgungsgebiete 2040 in Glandorf¹

Die nachfolgende Kartendarstellung zeigt die voraussichtliche Wärmeversorgung im Zielzustand an mit Ausweisung von Wärmenetzgebieten in den einzelnen Ausbaustufen (nach WPG § 18). Zur Interpretation ist anzumerken: Die Farbe, in welcher ein

bestimmtes Gebiet eingefärbt ist, zeigt die Heiztechnologie an, die dort vorzugsweise genutzt wird. So sind alle Baublockseiten in Rottönen eingefärbt, in denen ab einem bestimmten Zeitpunkt ein Wärmenetzanschluss verfügbar ist (im Gegensatz zu Abbildung 54 bis Abbildung 57). Das bedeutet nicht, dass diese Technik in jenem Gebiet ausschließlich oder vorrangig vorzufinden ist. Demnach können auch in einem rot gekennzeichneten Gebiet, in dem ein Wärmenetz die Vorzugs-Technologie darstellt, vereinzelt oder auch in signifikantem Umfang Wärmepumpen vorzufinden sein. Ob ein Gebiet als Prüfgebiet oder dezentral eingeteilt wird, hängt wiederum davon ab, welche Versorgungsart nach Endenergieverbrauch überwiegt.

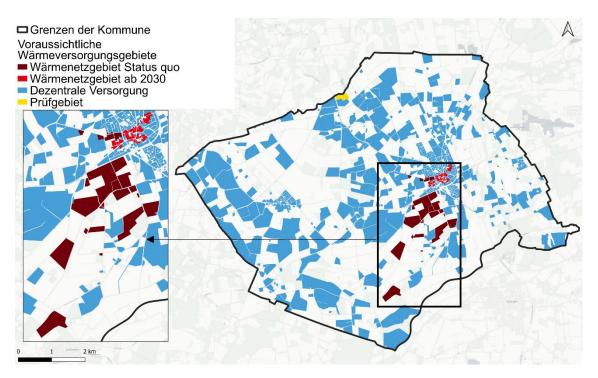


Abbildung 58: Übersicht über die **voraussichtlichen** Wärmeversorgungsgebiete in Glandorf¹

Im Jahr 2040 und auch 2045 ist die dezentrale Wärmeversorgung bei weitem dominierend im Gemeindegebiet. Ein weiteres Wärmenetz ist errichtet worden. Dort, wo gelbe Flächen verbleiben (lediglich in einem Gewerbe-/Industriegebiet), kommen v. a. synthetisches Methan oder Biomethan zum Einsatz (Erreichung der Treibhausgasneutralität bis 2040).

Wärmeversorgungsarten im Zieljahr

Die abschließende **Prognose der Wärmeversorgungsarten** im Jahre 2045 gemäß §§ 17, 18 und19 WPG wurde unter folgenden Annahmen durchgeführt:

Wärmenetze

Gebiete, in denen heute bereits Bestandswärmenetze existieren oder in denen neue Wärmenetze als Ergebnis der vorherigen Analysen eine geeignete Lösung darstellen, gelten als "sehr wahrscheinlich geeignet" für Standorte von Wärmenetzen im Jahr 2045.

Ein anderes Gebiet (Erweiterung Ortskern) mit geringerer Eignung für eine Wärmenetzerrichtung (siehe Abschnitt 3.3.2.1.2) wird als "wahrscheinlich geeignet" eingeordnet.

Verbleibende Baublockseiten an Straßenzügen mit Wärmeliniendichten von mehr als 1.500 kWh/m, die nicht in die ersten beiden Kategorien fallen, werden als "wahrscheinlich ungeeignet" klassifiziert.

Alle übrigen Gebiete sind als Wärmenetze "sehr wahrscheinlich ungeeignet".

Es zeigt sich, dass besonders im Ortskern von Glandorf relativ gute Bedingungen vorliegen und Lösungen mit leitungsgebundener Wärme realisierbar sind. Die Erweiterung Ortskern ist mit nur mäßig attraktiven Bedingungen für Wärmenetze einzustufen, sollte aber im Rahmen einer Machbarkeitsstudie als potenzielles Erweiterungsgebiet mitbetrachtet werden.

Des Weiteren wurde als mögliches **Fokusgebiet** auch der **Ortsteil Schwege** untersucht hinsichtlich einer Eignung als Gebiet mit einer leitungsgebundenen Wärmeversorgung.

In Schwege sind die Wärmeliniendichten aber im Mittel geringer als 1.500 kWh/m und zudem sind viele Neubauten bereits mit einer dezentralen Beheizungstechnologie ausgestattet, womit der Sanierungsdruck hier gering ist. Damit ist nicht zu erwarten, dass sich eine ausreichend hohe Anschlussquote für ein Wärmenetz in Schwege erreichen lässt, trotz der ansonsten günstigen Lage mit einer Biogasanlage, die entsprechend Wärme zur Verfügung stellen könnte. Entsprechend wird der Ortsteil Schwege als Fokusgebiet als "sehr wahrscheinlich geeignet" für eine dezentrale Versorgung eingestuft.

Diese Einstufung gilt dann auch für die anderen Ortsteile mit vergleichbaren oder geringeren Wärmeliniendichten.

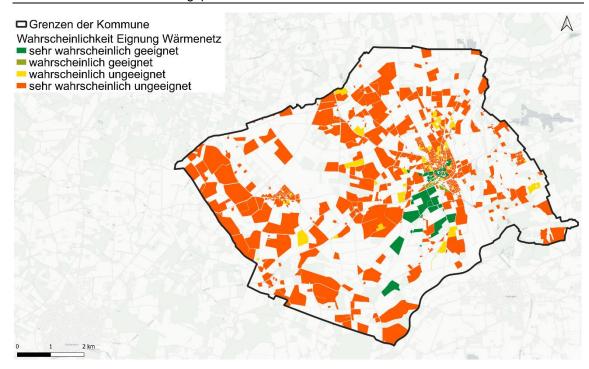


Abbildung 59: **Voraussichtliche** Eignung für eine Wärmeversorgung aus Wärmenetzen in Glandorf¹

Dezentrale Heiztechnologien

Die Klassifizierung der Wahrscheinlichkeiten für den Einsatz von dezentralen Anlagen erfolgt prinzipiell wie die oben beschriebene Einteilung für Wärmenetze. Kriterium für die Einteilung ist hier der aktuelle Anteil dezentraler Technologien am Endenergieverbrauch im Jahr 2045. Maßstab ist die Bottom-up-Rechnung. Jede Heizung, die nicht über ein Wärmenetz versorgt wird, oder positiv formuliert jede Heizung, die mit Biomasse betrieben oder als Wärmepumpe etc. ausgestattet ist, wird gezählt. Der Anteil dieser Technologien am Endenergieverbrauch entscheidet über die Einteilung in die jeweilige Wahrscheinlichkeitsklasse.

Anteil Dezentrale	Eignung
>75 %	"sehr wahrscheinlich geeignet"
<75 %, >50 %	"wahrscheinlich geeignet"
<50 %, >25 %	"wahrscheinlich ungeeignet"
<25 %	"sehr wahrscheinlich ungeeignet"

Tabelle 5: Definition der Eignung von Gebieten für eine dezentrale Wärmeversorgung

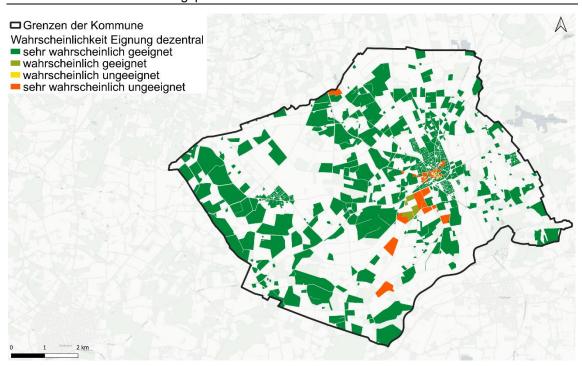


Abbildung 60: **Voraussichtliche** Eignung für eine dezentrale Wärmeversorgung in Glandorf¹

Wasserstoff:

Generell: "sehr wahrscheinlich ungeeignet" (Einstufung gemäß WPG)

Wasserstoffnetzgebiete werden in Glandorf unter den derzeitigen Voraussetzungen und Aussichten nicht erwartet. Aufgrund des Aufwands und der damit verbundenen Kosten – z. T. müssen Komponenten ausgetauscht werden, aber auch Parallelleitungen errichtet werden – wird eine Umwidmung des bestehenden Erdgasnetzes auf Wasserstoff nicht in Betracht gezogen. Alle Versorgungsgebiete im Gemeindegebiet werden demnach als "sehr wahrscheinlich ungeeignet" für die Versorgung mit Wasserstoff zur Gewinnung von Wärme eingestuft. Eine kartographische Darstellung erübrigt sich somit.

Grünes Methan:

In Glandorf besteht mit den vorhandenen Biogasanlagen die Möglichkeit, das Rohbiogas zu Biomethan aufzubereiten und ins öffentliche Netz einzuspeisen. Dazu gibt es seitens der Biogasanlagenbetreiber erste Vorüberlegungen. Eine Einspeisung müsste dabei in das dem örtlichen Gasverteilnetz vorgelagerte Gasnetz eingespeist werden, da das erzeugte Biomethan nicht alleinig in einem örtlichen Gasverteilnetz aufgenommen werden kann. Wenn dieses Gas dann über entsprechende Biogasbilanzkreise überregional zur Verfügung steht, ist für den erzielbaren Preis des Biomethans dann der Preis anzusetzen, den potenzielle Abnehmer bundesweit bereit wären zu zahlen (Zahlungsbereitschaft). Die Nachfrage nach grünen Gasen wird in Zukunft insbesondere im industriellen Bereich, aber auch eingeschränkt im Verkehrssektor, stark zunehmen. Dadurch sind die Preise einerseits volatil, je nach möglicherweise zur Verfügung stehender Alternativen, andererseits aber auch steigend aufgrund der ansteigenden Nachfrage bei eher gleichbleibender Erzeugungsmenge. Dies führt dazu, das Biomethan nicht als flächendeckender Energieträger in der Wärmeversorgung zu einem wirtschaftlichen Einsatz kommen dürfte.

Im Zieljahr werden voraussichtlich nur Verbraucher aus der Industrie mit Prozesswärmebedarf sowie die Spitzenkessel für die Wärmeerzeugung für die Wärmenetze weiterhin mit grünem Methan versorgt. Eine Versorgung der dezentralen Endkunden in der Fläche ist nicht vorgesehen.

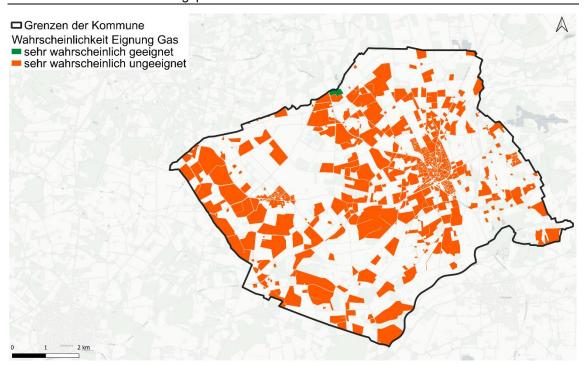


Abbildung 61: **Voraussichtliche** Eignung für die Wärmeversorgung mit grünem Methan in Glandorf¹

3.3.5 Zusammenfassung

Über die Analysen zur Wirtschaftlichkeit von Versorgungslösungen aus Sicht der Endkundinnen und Endkunden sowie Annahmen zur Sanierung und einer modellgestützten Simulation des Heizungswechsels wurde ein detailliertes Abbild einer möglichen treibhausgasneutralen Wärmeversorgung für Glandorf aufgezeigt. Ausgewählte Gebiete mit höheren Wärmeliniendichten (Fokusgebiete) wurden hinsichtlich einer Eignung als Wärmenetzgebiet untersucht. Gut geeignete Wärmenetzgebiete wurden identifiziert inkl. der möglichen Bereitstellung der Wärme. Bei den dezentralen Wärmeerzeugern v. a. in Form von Wärmepumpenlösungen ergibt sich der größte Zuwachs. Gas wird fast vollständig zurückgedrängt und spielt als grünes Gas (synthetisches Methan, Biomethan) ausschließlich zur Versorgung von Prozesswärmekunden und für die Spitzenlasterzeugung in den Wärmenetzen eine Rolle. Der flächendeckende Einsatz von Biomethan zur Substitution von Erdgas wird mit den aktuellen Rahmenbedingungen nicht wirtschaftlich sein.

Diese Ergebnisse bilden die Grundlage für weitere detaillierte Betrachtungen, wie Machbarkeitsstudien für Wärmenetze und die dazugehörige Erzeugung oder auch weitere Untersuchungen bzgl. der Gasnetzstrategie. Auch die Auswirkungen des starken Zubaus von Wärmepumpen auf das Stromverteilnetz sollten untersucht werden.

Wichtig ist es an dieser Stelle zu betonen, dass die obigen Darstellungen und Ausführungen einen möglichen Weg aufzeigen und weder eine Verpflichtung für die Nutzung einer bestimmten Technologie in einem Gebiet für die Endkundinnen und

Endkunden darstellen noch die Verpflichtung für einen Versorger, die entsprechende Infrastruktur (z. B. Wärme oder Gas) zu errichten, zu betreiben oder stillzulegen. Die kommunale Wärmeplanung soll, auch gemäß WPG bzw. NKlimaG (Niedersachsen), zunächst eine Orientierung für alle Beteiligten bieten.

Die vorliegende kommunale Wärmeplanung stellt darüber hinaus den Sachstand auf Grundlage der aktuellen Gegebenheiten dar. Da die kWP einerseits zu verstetigen ist und andererseits alle 5 Jahre validiert werden muss, können in der Überarbeitung Weiterentwicklungen und Änderungen der Rahmenbedingungen berücksichtigt werden. Daraus können ggf. neue Optionen und Handlungsfelder entstehen.

4 Strategie und Maßnahmenkatalog

Die Strategie für die Wärmewende in Glandorf basiert auf dem zuvor erarbeiteten Zielszenario mit den beschriebenen Zielwerten für die Stützjahre 2030, 2035 und 2040.

Mit der Strategie soll die Grundlage gelegt werden, um die Ziele auch zu den entsprechenden Stützjahren zu erreichen. Wesentliche Handlungsfelder bestehen in der Reduktion des Wärmebedarfs durch Sanierung und Heizungsumstellung, der Erschließung von Potenzialen der erneuerbaren Wärmeerzeugung sowie der Realisierung von neuen Wärmenetzen. Darüber hinaus ist eine treibhausgasneutrale Gasversorgung im Bereich der industriellen Versorgung von Bedeutung, sofern keine Alternativen zur Prozesswärmeversorgung, z. B. durch eine stärkere Elektrifizierung der Wärmebedarfe zur Verfügung stehen. Zusätzlich wird auch langfristig für die Spitzenlasterzeugung für die Wärmenetze eine Nutzung von grünem Methan angenommen.

Dazu werden im folgenden Maßnahmenkatalog Maßnahmen aufgeführt, die sich in kommunikative, organisatorische oder technische sowie flankierende Maßnahmen unterteilen lassen.

4.1 Maßnahmenkatalog

In diesem Kapitel werden Maßnahmen aufgeführt, die kommunikative, organisatorische oder technische Maßnahmen darstellen.

Folgende Maßnahmen, die z. T. auch in Steckbriefform zusammengefasst sind, werden vorgeschlagen:

Kommunikative Maßnahmen

- Beratung Energetische Sanierung und Heizungstechnologien
- Durchführung eines Bürgerinformationsveranstaltungstags

Organisatorische Maßnahmen

- Integration des Wärmeplans in die Bauleitplanung
- Aufsetzen eines Monitoringkonzeptes zur Steuerung der Umsetzung der identifizierten Maßnahmen
- Fortführung der Vernetzung der Stakeholder anlassbezogene Gesprächsrunden

Technische Maßnahmen

- Erstellung von Machbarkeitsstudien nach BEW für neue Wärmenetze
- Aufbau von Kooperationen zur Umsetzung technische Maßnahmen
- Weitere Maßnahmen/Einzelprojekte
 Energetische Sanierung öffentlicher Gebäude, z. B. Sportstätten

Kommunikative Maßnahmen

K 1: Beratung Energetische Sanierung und Heizungstechnologien:

Nr. K 1: Energieberatung			
Handlungsfeld	Kommunikative Maßnahmen	Priorisierung	++
Räumliche Veror- tung	Gemeindegebiet in Ko	operation mit den Nachba	rkommunen
Startjahr	2025	Zieljahr	2028
Zielsetzung	Steigerung der Sanier	ungsrate für private Wohn	gebäude
Kurzbeschreibung	Steigerung der Sanierungsrate für private Wohngebäude Um die Sanierungsrate von Gebäuden zu steigern, eignet sich das Beratungsangebot an Bürgerinnen und Bürger. Sie ist eine aufsuchende Energieberatung. In ausgewählten Quartieren mit hohem Sanierungsbedarf und Anteil an Einfamilienhäusern können Haushalte gezielt angesprochen werden. Sie erhalten eine kostenfreie gebäudeindividuelle Initialberatung durch neutrale, qualifizierte Energieberaterinnen und Energieberater. Im Fokus stehen dabei die Aufklärung und Informationsvermittlung bei Immobilienbesitzerinnen und Immobilienbesitzer, um Bewusstsein zu steigern, Sanierungsschritte zu priorisieren und Förderoptionen für eine energetische Sanierung zu besprechen. Die Kampagne soll Eigentümerinnen und Eigentümer motivieren, Sanierungen umzusetzen.		
	• •	Kooperation mit den Nac	
Umsetzungsschritte & Meilensteine	 In 2025: Meilenstein Veröffentlichung des Beratungsangebotes Gewinnung von Energieexpertinnen und Energieexperten; Meilenstein: Vertrag Ansprache der Haushalte / Eigentümerinnen und Eigentümer im Quartier: Mailing, Öffentlichkeitsarbeit, lokale Information; Auftaktveranstaltung; Meilenstein: 10 Beratungstermine geplant 		
Erfolgsindikatoren	 Min. 20 % der kontaktierten Eigentümerinnen und Eigentümer nutzen das Beratungsangebot Min. 40 % der beratenen Eigentümerinnen und Eigentümer erstellen anschließend einen iSFP bzw. verschiedene energetische Sanierungsmaßnahmen sind begonnen / umgesetzt (s. Evaluation) Min. 60 % der Eigentümerinnen und Eigentümer sind für nutzerabhängige Energieeinsparung sensibilisiert 		
Synergien (+) /	(+) Kombination mit den Angeboten der Verbraucherzentrale oder des örtli-		
Hemmnisse (-)	chen Energieversorgers (TEN)		
	(+) Mehraufträge lokales Handwerk durch Sanierungsmaßnahmen		
	(+) Betriebskostensenkung für Eigentümerinnen und Eigentümer v.a. beim Heizen		
	(+) Eigentümerinnen und Eigentümer unabhängig von Sanierungsmaßnahmen für nutzungsbedingte Energieeinsparung sensibilisiert		
	(+) Beratungsangebot	e zu Klimaschutz / -anpas	sung kombinierbar

Strategie und Maßnahmenkatalog

	(-) Einfluss auf Wärmenetzplanung, wenn Nachfrageseite reduziert			
Endenergieeinspa- rung (MWh/a)	Abhängig von Sanie- rungstiefe zwischen	Minderung THG jähr- lich (t CO2 äq/a)	Einsparungen von ca. 50 % der THG-Emissionen	
	10 – 20 % Endener- gieeinsparung / Maßnahme	Kumulierte THG-Ein- sparung (t CO2 äq)	pro Gebäude (im Schnitt 3,5 t CO2 äq/a)	
Federführung/ Betei- ligte	 Klimaschutzmanagement (KSM) Externe Energieexpertinnen und Energieexperten Ggf. Verbraucherzentrale, weitere Multiplikatorinnen und Multiplikatoren 			
Personeller Aufwand	ca. 10 Fachtage / Jahr KSM			
Finanzieller Aufwand	Ggf. Aufwand für Druck Flyer / Plakate. Gesamtkosten über vier Jahre (2025 – 2028): 6.000 € (netto).			
Finanzierungs-me- chanismen	Aktuell keine Förderop	Aktuell keine Förderoptionen Kostenträger ist die Gemeinde Glandorf		

K 2: Durchführung eines Bürgerinformationsveranstaltungstags

Nr. K 2: Bürgerinformationsveranstaltungstag			
Handlungsfeld	Kommunikative Maß- nahmen	Priorisierung	++
Räumliche Veror- tung	Gemeindegebiet Glande	orf	
Startjahr	2025	Zieljahr	Fortlaufend
Zielsetzung	Kommunikationskonzep	ot zur Information der Bürger	
Kurzbeschreibung	nungsstand und die Um der Gemeindeverwaltur anstaltungen abgehalte In diesen Veranstaltung Planung, zum Einbau ur meversorgungstechnolo Die Informationsangebo	gen erhalten die Teilnehmei nd zur Nutzung neuer zentrale	armeplanung sollten von Bürgerinformationsver- nden Informationen zur er oder dezentraler Wär- abständen veröffentlicht,
Umsetzungsschritte & Meilensteine	meinde Glandorf un gieversorger (TEN e	ner Bürgerinformationsveran ter anderem in Kooperation eG) Ergebnisse der Veranstaltur	mit dem örtlichen Ener-
Erfolgsindikatoren	Mindestens eine öffentli	che Informationsveranstaltun	g stattfinden
Synergien (+) / Hemmnisse (-)	(+) Die Bürgerinformationsveranstaltung trägt dazu bei, das Verständnis und die Akzeptanz der Maßnahmen und Energiekonzepte in der Bevölkerung zu steigern		
	(+) Eine Informationsveranstaltung für Bürgerinnen und Bürger kann bestehende Zweifel ausräumen und den Grundstein für eine fundierte Investitionsentscheidung legen		
	(-) Der Effekt der Informationsveranstaltung ist schwierig zu erfassen, da in die Entscheidung der Bevölkerung immer auch persönliche und politische Rahmenbedingungen einwirken		
Endenergieeinspa- rung (MWh/a)	Nicht quantifizierbar	Minderung THG jährlich (t CO2 äq/a)	Nicht quantifizierbar
		Kumulierte THG-Einsparung (t CO2 äq)	
Federführung/ Betei- ligte	Gemeindeverwaltung	Glandorf	
Personeller Aufwand	 Die Höhe der Perso Anzahl der Teilnehn 	nalkosten für die Koordination nenden.	n ist abhängig von der

Strategie und Maßnahmenkatalog

	Die Berichterstattung über die Bürgerinformationsveranstaltung kann in der Lokalzeitung oder auf der Internetseite der Gemeinde veröffentlicht werden.
Finanzieller Aufwand	Die Kosten für die Bürgerinformationsveranstaltung hängen von der Anzahl der Teilnehmenden sowie dem Veranstaltungsort ab. Eine Förderung der Kosten ist nicht möglich
Finanzierungsme- chanismen	Kostenträger ist die Gemeinde Glandorf

Organisatorische Maßnahmen

O 1: Integration des Wärmeplans in die Bauleitplanung

Nr. O 1: Integration des Wärmeplans in die Bauleitplanung				
Handlungsfeld	Organisatorische Maß- nahmen	Priorisierung	+	
Räumliche Verortung	Gesamtes Gemeindegeb	Gesamtes Gemeindegebiet		
Startjahr	2026	Zieljahr	fortlaufend	
Zielsetzung		n zur treibhausgasneutrale lung	n Wärmeversorgung in	
Kurzbeschreibung	Prozesse der Bauleitplanung Der Wärmeplan ist laut Bundesgesetz (WPG §23) ein nach außen rechtlich unverbindliches Planungsinstrument. Er begründet keine einklagbaren Rechte oder Pflichten. Er liefert aber die strategische Planungsgrundlage für eine kosteneffiziente und treibhausgasneutrale Wärmeversorgung bis spätestens 2045 – nach NKlimaG bereits 2040 -, so dass verwaltungsintern und bei relevanten Prozessen der Bauleitplanung der Wärmeplan zu berücksichtigen ist. Dabei sehen u. a. das Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz - EEG 2023) in § 2 allgemein für die Errichtung und den Betrieb von Anlagen erneuerbarer Energien sowie das Gesetz für die Wärmeplanung und zur Dekarbonisierung der Wärmenetze (Wärmeplanungsgesetz – WPG 2023) in § 2 spezifisch für die Errichtung und der Betrieb von Anlagen zur Erzeugung von Wärme aus erneuerbaren Energien, die in ein Wärmenetz gespeist wird, vor, dass diese im überragenden öffentlichen Interesse liegen und der öffentlichen Sicherheit dienen. Entsprechend sind sie vorrangiger Belang in die jeweils durchzuführenden Schutzgüterabwägungen einzubringen. Auch das Baugesetzbuch regelt seit Anfang 2024 in §1 Absatz 6, Nr. 7g, dass bei der Aufstellung der Bauleitpläne insbesondere die Darstellungen in Wärme-			
Umsetzungsschritte und Meilensteine	 plänen zu berücksichtigen sind. Fortführung der Beteiligung der für Klimaschutz Verantwortlichen an verwaltungsinternen Planungsrunden, Beteiligungen im Rahmen von B-Plänen, Veränderungen / Überarbeitungen Flächennutzungsplan und anderer städtebaulichen (auch informellen) Planungen für das Gemeindegebiet (etwa Satzungen) Ggf. Beteiligung bei Vorlagen für politische Gremien Fortführung der Beteiligung bei weiteren informellen Planungen Fortführung der Einbindung für Klimaschutz Verantwortlichen in strategische Planungen (bspw. Leitlinien) kommunaler Liegenschaften 			
Erfolgsindikatoren	Belange und Projekte der Wärmeplanung sind in der Bauleitplanung berücksichtigt.			
Synergien (+) /	(+) Belange des Klimaschutzes werden, Energieeinsparung und Treib-			
Hemmnisse (-)	hausgas-Minderung (-) begrenzte verwaltungsinterne Ressourcen			
Endenergieeinsparung (MWh/a)		Minderung THG jähr- lich (t CO2 äq/a)	Nicht quantifizierbar	

Strategie und Maßnahmenkatalog

	Nicht quantifizierbar da abhängig vom Projekt	Kumulierte THG-Ein- sparung (t CO2 äq)	Nicht quantifizierbar
Federführung/ Betei- ligte	 Für Klimaschutz Verantwortliche Stadtentwicklung und Bauplanung Immobilienbetrieb (für kommunale Liegenschaften) 		en)
Personeller Aufwand	Variabel, je nach Anzahl	der Verfahren; Schätzung	bis zu 10 FT / Jahr

O2: Aufsetzen eines Monitoringkonzeptes zur Steuerung der Umsetzung der identifizierten Maßnahmen

Nr. O 2: Aufsetzen eines Monitoringkonzeptes zur Steuerung der Umsetzung der identifizierten Maßnahmen.			
Handlungsfeld	Organisatorische Maß- nahmen	Priorisierung	+++
Räumliche Verortung	Gesamtes Gemeindegeb	iet	
Startjahr	2026	Zieljahr	fortlaufend
Zielsetzung	Sicherstellung der Erreicl	nung der definierten Maßn	ahmen
Kurzbeschreibung	 Laufendes Monitoring der Zielerreichung der umsetzenden Maßnahmen, Aufsetzen und Controlling Zeitplanung Umsetzung des Monitorings wie im Kap. 5.2 beschrieben. Insbesondere sollte das initiierte Stakeholdergremium anlassbezogen tagen und eine Plattform für die Umsetzung der kommunalen Wärmeplanung bieten. (Neu-)Priorisierung der identifizierten Maßnahmen 		
Umsetzungsschritte & Meilensteine	 Erstellung Zeitplan mit Zielen und Meilensteinen (bis 2025, dann fortlaufende Aktualisierung) Bestimmung Verantwortlichkeiten (bis 2025, dann fortlaufende Aktualisierung) Aufsetzen eines Steuerungsprozesses (bis 2025, dann fortlaufende Aktualisierung) 		
Erfolgsindikatoren	Vorliegen und verbindliche Einhaltung des erstellten Monitoring-Konzepts		
Synergien (+) / Hemmnisse (-)	(+) mögliche "Baupause" aus bestehenden Monitoringkonzepten (Klimaschutzkonzepte o. ä.) nutzbar bzw. umgekehrt für diese nutzbar (-) keine		
Kostenträger	Gemeinde		
	Positive Ausv	virkungen	
Endenergieeinsparung (MWh/a)	Nicht quantifizierbar	Minderung THG jähr- lich (t CO2 äq/a)	Nicht quantifizierbar
	Kumulierte THG-Ein- sparung (t CO2 äq) Nicht quantifizierbar		
Positive Zusatzeffekte der Maßnahme	Siehe Synergieeffekte (oben)		
Einzubindende Akteure	 Gemeinde Glandorf (Leitung) EVU/ TEN ggf. weitere Dienstleister (Berichterstatter) Beteiligte an den durchgeführten Stakeholder-Workshops Weitere Beteiligte (siehe alle genannten Akteure in übrigen Steckbriefen) 		
Finanzieller Aufwand	Keiner		

O 3: Fortführung der Vernetzung der Stakeholder durch anlassbezogene Gesprächsrunden

Nr. O 3: Beteiligung der Stakeholder			
Handlungsfeld	Organisatorische Maß- nahmen	Priorisierung	++
Räumliche Verortung	Gesamtes Gemeindegeb	iet	
Startjahr	2026	Zieljahr	fortlaufend
Zielsetzung	dem Prozess der Akteurs keholdern. Ziel ist dabei i	er Gesprächsrunden mit de beteiligung sowie ggf. wei nsbesondere die Vernetzu Maßnahmen und Projekte	teren relevanten Sta- ing und der frühzeitige
Kurzbeschreibung	Im Rahmen dieser Gespräche sollen die Möglichkeiten geprüft werden, den Energiebedarf öffentlicher Gebäude sowie die Versorgung des geplanten Anbaus der Grundschule durch Energie aus Biogasanlagen zu decken. Zu diesem Zweck soll die Zusammenarbeit mit den Betreibern von Biogasanlagen im Rahmen einer Kooperationsarbeit intensiviert werden. Diese Gespräche sollen außerdem an bestimmte Anlässe geknüpft und als feste Termine vereinbart werden.		
Umsetzungsschritte & Meilensteine	 Die Organisation einer Stakeholder-Gesprächsrunde in Zusammenarbeit mit allen relevanten Stakeholdern. Die Gespräche an bestimmte Anlässe knüpfen und als frühzeitige Termine vereinbaren. 		
Synergien (+) /	(+) Die Stakeholderbeteil	igung dient der dauerhafte	n Vernetzung mit den
Hemmnisse (-)	relevanten Stakeholdern und ermöglicht einen frühen Austausch über Versorgungsmöglichkeiten sowie geplante Maßnahmen und Projekte.		
	(+) Eine Stakeholderbeteiligung ist die Grundlage für eine fundierte und effiziente Investitionsentscheidung eines Projektes in der Gemeinde Glandorf.		
	,	ist für einige Stakeholder tenziale oder ihre festen Z	
Kostenträger	Kostenträger ist die Gemeinde Glandorf		
Einzubindende Akteure	 Gemeinde Glandorf (Leitung) Energieversorgungsunternehmen (TEN) Beteiligte an den durchgeführten Stakeholder-Workshops Betreiber von Biogasanlagen 		

Technische Maßnahmen

T 1: Erstellung von Machbarkeitsstudien nach BEW für neue Wärmenetze

Nr. T 1: Erstellung von Machbarkeitsstudien nach BEW für neue Wärmenetze			
Handlungsfeld	Technische Maßnahme	Priorisierung	+++
Räumliche Veror- tung	Vorzugsgebiete Wärmenetze (Ortskern, Gewerbegebiet und ergänzendes Wohngebiet)		
Startjahr	2026	Zieljahr	2027
Zielsetzung	Zeigen des Pfads zur Entwicklung neuer Wärmenetze, die bis 2040 vollständig dekarbonisiert betrieben werden. Für die Erzeugung der Wärme werden die in der Potenzialanalyse dargestellten Potenziale erneuerbarer Wärmeerzeugung mit den Bedarfen abgeglichen und technisch sowie wirtschaftlich bewertet. Bei der Betrachtung der Potenziale sind insbesondere bei genehmigungsrechtlichen Fragestellungen die örtlichen Behörden einzubeziehen. Die Zuordnung der möglichen Erzeugungstechnologien erfolgt im Zuge einer möglichen Antragstellung. Es wird eine Ermittlung der Investitionskosten sowie der förderfähigen Kosten und die Darstellung der Wirtschaftlichkeit durchgeführt. Identifizierte Verdichtungs- oder Erweiterungspotenziale können für den weiteren Wärmenetzausbau genutzt werden.		
Umsetzungs- schritte & Meilen- steine	Die Bundesförderung effiziente Wärmenetze (BEW) fördert die weitere technische und wirtschaftliche Untersuchung der Machbarkeit von neuen Wärmenetzen und der dazugehörigen Wärmeerzeuger Vorliegen einer BEW-Machbarkeitsstudie ist darüber hinaus auch Voraussetzung für Betriebskostenförderung (u. a. Solarthermie und Wärmepumpen) sowie Investitionskostenförderung nach BEW 1. Erstellung Projektskizze je Netz und Beantragung von Fördermitteln (BAFA) 2. Einreichung Machbarkeitsstudie BAFA		
Erfolgsindikatoren	Machbarkeitsstudie liegt	vor	
Synergien (+) / Hemmnisse (-)	(+) Vorarbeiten der KWP nutzbar (u. a. zu Wärmenetzausbau und -ver- dichtung sowie Potenziale von erneuerbarer Wärme) (-) Verzögerung von Fördermittelvergabe durch BAFA aufgrund haus- haltspolitischer Randbedingungen		
Endenergieeinspa- rung (MWh/a)	Nicht quantifizierbar, da abhängig vom	Minderung THG jähr- lich (t CO2 äq/a)	Nicht quantifizierbar

	jeweiligen Netz und ak- tueller Wärmerzeugung	Kumulierte sparung (t C		Nicht quantifizierbar
Einzubindende Ak- teure	 Wärmenetzbetreiber In der Regel externe/ Verwaltung Klimasch Weitere externe Akte initiativen/ -genossen 	r Dienstleister utzmanageme ure (örtlicher \	/ersorger, N	letzbetreiber, Energie- nmunen, etc.)
Personeller Auf- wand	30 bis 50 PT (stark abhär beim Dienstleister (Modu		•	, Synergien möglich)
Finanzieller Auf- wand	Kosten stark abhängig von der Größe des Wärmenetzes und dem Untersuchungsfokus, Aufwand ca. 50 - 80 T€ je Wärmenetz (Durchführung Machbarkeitsstudie, Modul 1, ohne HOAI 2-4), Förderung zu 50 % durch BEW			
Finanzierungsme- chanismen	z. B. Wärmenetzbetreibe durch BAFA ²⁵	r (nur nicht-gef	förderter Ant	teil), 50 % Förderung

-

²⁵ BAFA - Bundesförderung für effiziente Wärmenetze (BEW)

T 2: Aufbau von Kooperationen zur Umsetzung technische Maßnahmen

Nr. T 2: Prüfung des Wärmepotenzials aus Abwasser			
Handlungsfeld	Technische Maßnahme	Priorisierung	++
Räumliche Veror- tung	Vorzugsgebiete Wärmenetze (Ortskern, Gewerbegebiet und ergänzendes Wohngebiet) in Kooperation mit den Nachbarkommunen		
Startjahr	2026	Zieljahr	2027
Zielsetzung	Voruntersuchung zur Prüfurationsprojekt mit der Nachdarfs eines potenziellen Verbabei soll eine Abwasser-Werden.	abarkommune zur Decku ersorgungsgebiets in der	ng des Grundlastbe- Gemeinde Glandorf.
Kurzbeschreibung	Es ist geplant, die Klärwässer aus Bad Laer zukünftig nach Glandorf zu leiten und dort, im Rahmen einer möglichen Erweiterung, in der Kläranlage weiter zu behandeln. Die Nutzung des Abwassers nach der Kläranlage beeinflusst den Klärprozess hingegen nicht negativ. Außerdem ist die Reinigung deutlich weniger aufwendig. Bei der Potenzialermittlung wurden die aktuellen Abwassermengen der Kläranlage Glandorf, die potenziellen Mengen aus Bad Laer sowie die Temperatur der durchmischten Abwässer berücksichtigt. Die Nutzung der Abwasserwärme könnte sich insbesondere entlang der Längsachse des Gemeindegebiets lohnen. Um jedoch konkrete Aussagen treffen zu können, sollen bei der Planung der Anbindung der Kläranlage zwischen den beiden Kommunen im Regelfall sowie während länger andauernder Trockenzeiten die Messwerte zur Temperatur des Abwassers und zu den Durchflussmengen er-		
Umsetzungs- schritte & Meilen- steine	 Kooperationen mit der Gemeinde Bad Laer zur Umsetzung des Projekts. Einreichung einer Voruntersuchung bzw. einer Machbarkeitsstudie (BAFA) Erstellung Projektskizze des potenzialen Wärmenetz und Beantragung von Fördermitteln (BEW) 		
Erfolgsindikatoren	Die effiziente Nutzung der verfügbaren Abwasserwärmemengen aus der Kläranlage zur Deckung des Grundlastbedarfs eines potenziellen Versorgungsgebiets.		
Synergien (+) / Hemmnisse (-)	(+) Vorarbeiten der KWP n dichtung sowie die Potenzi wärme aus Abwasser)	ale von lokaler erneuerb	arer Wärme (Ab-
	(+) Der wesentliche Vorteil sen Temperatur ganzjährig		•

	COP der Wärmepumpe auch im Winter, was sich wiederum positiv auf die Energieeffizienz auswirkt.			
	(-) Verzögerung von Fördermittelvergabe durch BAFA aufgrund haushaltspolitischer Randbedingungen			
	(-) Bei einer Nutzung der Abwärme vor der Kläranlage können die niedrigen Abwassertemperaturen im Winter sich negativ auf die Abbauleistung der Kläranlage auswirken			
rung (MWh/a)	Nicht quantifizierbar, Je nach nutzbarer Wärme-	Minderung THG jähr- lich (t CO2 äq/a)	Nicht quantifizierbar	
	menge, entfällt die Erzeugung durch fossile Energieträger.	Kumulierte THG-Ein- sparung (t CO2 äq)	Nicht quantifizierbar	
Einzubindende Akteure	 Gemeinde Glandorf (Leitung) Die benachbarte Kommunen Gemeinde Bad Laer Entwässerungsbetrieb Glandorf, ggf. Tiefbauamt Weitere externe Akteure (örtlicher Versorger, Netzbetreiber, Energieinitiativen/ -genossenschaften, etc.) 			
Personeller Aufwand	Personalkosten für die Begleitung der Durchführung, etc.: ca. 8.500 € (15%- Stelle), stark abhängig von Wärmenetzgröße, Synergien möglich			
Finanzieller Auf- wand	 Falls eine Voruntersuchung bzw. eine Machbarkeitsstudie erforderlich ist: Durchführung Machbarkeitsstudie, Modul 1, ohne HOAI 2-4), Förderung zu 50 % durch BEW Bei dem Bau eines Wärmenetzes: Bundesförderung für effiziente Wärmenetze (BEW) - 30 bis 40 % der Investitionskosten (Anschaffung und Installation; abhängig vom gewählten Modul des Förderprogramms) 			
Finanzierungsme- chanismen	z. B. Wärmenetzbetreiber (nur nicht-geförderter Anteil), 50 % Förderung durch BAFA			

T 3: Einzelprojekte/ Weitere Maßnahmen

Nr. T 3: Einzelprojekte/ Weitere Maßnahmen				
Handlungsfeld	Technische Maßnahme	Priorisierung	+	
Räumliche Veror- tung	Gesamtes Gemeindegebiet			
Startjahr	2026	Zieljahr	fortlaufend	
Zielsetzung	Fortlaufende Prüfung der Gas- und Wasserstoffinfrastruktur sowie der Sanierungsmaßnahmen an öffentlichen Liegenschaften.			
Kurzbeschreibung	Nach der Erstellung von Machbarkeitsstudien für neue Wärmenetze kann im Falle der Wirtschaftlichkeit die Detailplanung und Umsetzung der Wärmeerzeugungen und -netze initiiert werden. Dies könnte mit der Ausweisung von Wärmenetzgebieten einhergehen. Darüber hinaus wird die Prüfung und Entwicklung von Einzelprojekten in Neubaugebieten sowie die Durchführung energetischer Sanierungsmaßnahmen an öffentlichen Liegenschaften, beispielsweise Sportstätten, als lokale Leuchtturmprojekte empfohlen.			
Synergien (+) / Hemmnisse (-)	(+) Die Möglichkeit, den aktuellen Förderaufruf im Rahmen des 8. Energieforschungsprogramms (Mikroprojekte) zu nutzen.(-) Die Verpflichtung zur Umsetzung der Vorgaben des GEG's in den be-			
	troffenen Gebieten.			
Einzubindende Ak- teure	 Gemeinde Glandorf (Leitung) Weitere externe Akteure 			
Finanzierungsme- chanismen	Eine mögliche Teilnahme am Förderaufruf für Mikroprojekte des 8. Energieforschungsprogramms sollte geprüft werden. ²⁶			

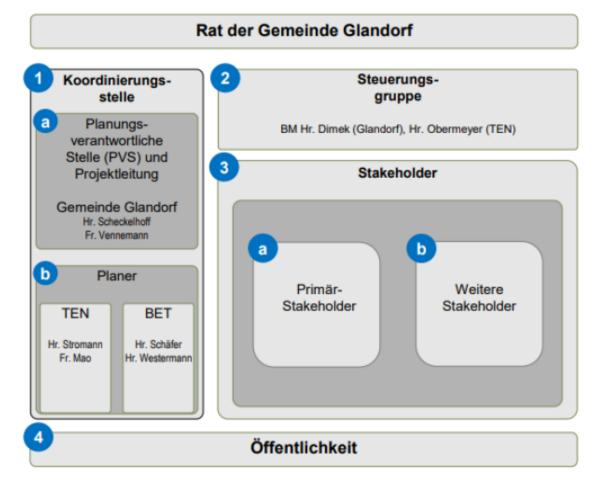
-

https://www.energieforschung.de/de/foerderung/foerderangebote/foerderaufruf-vom-plan-zurwende

5 Prozessübergreifende Elemente der kommunalen Wärmeplanung

Die Arbeitsschritte zur Erstellung der kommunalen Wärmeplanung orientieren sich am Technischen Annex der Kommunalrichtlinie unter Berücksichtigung der Anforderungen aus dem WPG.

P	Kapitel 1	AP 1: Bestandsanalyse
	Kapitel 2	AP 2: Potenzialanalyse
(Kapitel 3	AP 3 A: Zielszenarien und Entwicklungspfade
	Kapitel 4	AP 3 B: Strategie und Maßnahmenkatalog
	Kapitel 5.1	AP 4: Beteiligung von Verwaltungseinheiten und allen weiteren relevanten Akteuren
Ø _x	Kapitel 5.2	AP 5: Verstetigungsstrategie
1	Kapitel 5.3	AP 6: Controlling-Konzept
	Kapitel 5.4	AP 7: Kommunikationsstrategie


In den vorangehenden Kapiteln wurden mit einer strukturierten Problemlösungsmethodik die Ausgangslage im Bestand (AP1) und die Potenziale (AP2) analysiert sowie die Zielszenarien (AP 3A) und die Strategie der Wärmewende mit dem Maßnahmenkatalog (AP 3B) entwickelt.

Die Arbeitspakete 4 bis 7 (Beteiligung von Verwaltungseinheiten und allen weiteren relevanten Akteuren, Verstetigungs-, Kommunikationsstrategie sowie Controlling-Konzept) wurden kontinuierlich und parallel zur Entwicklung der Wärmeplanung bearbeitet. Das bedeutet, sie sind begleitend, parallel oder ergänzend zu den vorangestellten Arbeitspaketen erforderlich und haben eine unterstützende Funktion des (kontinuierlichen) Planungsprozesses.

So ist durch die Beteiligung von Verwaltungseinheiten und allen weiteren relevanten Akteuren (AP 4) sicherzustellen, dass alle wichtigen Verwaltungseinheiten und relevanten Akteure in den Planungsprozess geeignet eingebunden werden. Die Verstetigungsstrategie (AP 5) mit Organisationsstrukturen und Zuständigkeiten sorgt für die Fortführung des Prozesses nach der initialen Berichterstellung. Die Planungen und Maßnahmen sollen aus dem Konzept in die Praxis überführt werden. Außerdem ist die Planung regelmäßig zu aktualisieren und anzupassen. Das Controlling-Konzept (AP 6) stellt sicher, dass die vorgestellten Maßnahmen zu Projekten mit messbarem Fortschritt werden. Im Falle einer Abweichung von den gesetzten Zielen sind weitere Maßnahmen zu ergreifen. Die Kommunikationsstrategie (AP 7) schließlich zielt insbesondere auf die unterstützungsorientierte Zusammenarbeit mit weiteren Zielgruppen ab und umfasst die Information der Öffentlichkeit über den Planungs- und Umsetzungsfortschritt. Ihre Kernelemente sind der Zwischen- und Endbericht sowie die begleitende Öffentlichkeits- und Pressearbeit zur kommunalen Wärmeplanung. Zudem beinhaltet die Kommunikationsstrategie auch die Formate, in denen über Fortschritte und Erfolge bei der Umsetzung der geplanten Maßnahmen in der Zukunft informiert werden soll.

5.1 Beteiligung von Verwaltungseinheiten und allen weiteren relevanten Akteuren

Im Rahmen dieses Arbeitspaketes (AP 4) wurde zunächst die **Projektstruktur** entwickelt. Sie illustriert, welche Organisationen, Einheiten der Verwaltung, Gruppen und Kreise für die Erstellung der Wärmeplanung von besonderer Bedeutung sind.

Die Einbindung der **Verwaltung** erfolgte durch die zentrale Koordinierungsstelle und übergeordnet in der Steuerungsgruppe. Wesentliche Inhalte wurden im Rahmen der Veröffentlichung des Zwischenberichts vorgestellt. Danach wurde der Öffentlichkeit die Gelegenheit zur Kommentierung des Zwischenberichts gegeben.

Ein besonderes Augenmerk galt im Prozess vor allem den **Stakeholdern** (Gruppe 3). Ein umfassendes Akteursmapping innerhalb der Koordinierungsstelle bildete die Grundlage für die Einbindung der relevanten Stakeholder. Sie wurden umfassend informiert und eingebunden. Zu Beginn erfolgte eine individuell aufbereitete Information für die Stakeholdergruppe. Hierzu wurde am 07. Januar 2024 ein Workshop durchgeführt, bei dem die Teilnehmenden intensiv die Herausforderungen und Chancen der kWP diskutierten. Dadurch konnten die Stakeholder intensiv in die Thematik der kWP eingeführt werden und ihrerseits wichtige Aspekte und Anregungen in die Diskussion einbringen. Der Workshop hatte zum Ziel, alle relevanten und wichtigen Akteure einzubeziehen und zur aktiven Mitwirkung am Wärmeplanungsprozess zu motivieren. Dies umfasste einerseits die Information und Konsultation sowie andererseits die Untersuchung der Möglichkeiten und der Bereitschaft, an der Wärmewende in Glandorf, etwa als Abwärmelieferant oder als potenzieller Wärmekunde, zu partizipieren. Ergänzend wurden weitere bilaterale Gespräche geführt, insbesondere auch um die Möglichkeiten des Anschlusses und der Erweiterung bestehender EE-Anlagen (Biogasanlagen) auszuloten.

Vor der Veröffentlichung des Zwischenberichts wurde in einem zweiten Schritt der Bauausschuss in seiner Sitzung am 25. März 2024 informiert. Die Ergebnisse des Zwischenberichts wurden hier vorgestellt und zur Diskussion gestellt. Ziel war es vor allem, die Bestands- und Potenzialanalyse vorzustellen und einen ersten Einblick in die Zielszenarien zu geben.

Den Akteuren in Glandorf sowie weiteren Stakeholdern, aber auch der interessierten Öffentlichkeit wurde der Zwischenbericht Ende März online zur Verfügung gestellt.

Im Ergebnis konnte mit diesem Vorgehen eine sehr gute Akzeptanz unter den maßgeblichen Stakeholdern erreicht werden.

Nach der Auswahl und Festlegung der Untersuchungsgebiete (Fokusgebiete) möglicher Wärmenetzgebiete (Ortskern und Schwege) wurden weitere Detailanalysen für diese Gebiete durchgeführt. Dies schafft eine Basis für die Umsetzung zukünftiger Maßnahmen der Wärmewende.

Angrenzenden Kommunen wurde die Gelegenheit zur Kommentierung der kommunalen Wärmeplanung der Gemeinde Glandorf mit der Veröffentlichung des Zwischenberichts Ende März 2025 gegeben. Da die Planungen in den Nachbarkommunen unterschiedliche Entwicklungsstadien aufweisen, sind bisher noch keine konkreten Kommunen übergreifende Potenziale identifiziert worden. Es gibt bereits einen regelmäßigen Austausch der angrenzenden Kommunen.

5.2 Verstetigungsstrategie

Die "Verstetigungsstrategie (AP 6)" für die kommunale Wärmeplanung umfasst Strategien und entwickelt konkrete Maßnahmen, um die Wärmeplanung dauerhaft in den Planungs- und Entscheidungsprozessen der Gemeinde Glandorf zu verankern. Nur so kann erreicht werden, dass die erarbeiteten Pläne und Maßnahmen weiterentwickelt, konkretisiert und auch in die Praxis umgesetzt werden. Hierzu sind entsprechende Organisationsstrukturen, Verantwortlichkeiten und Zuständigkeiten sowie Ressourcen erforderlich. Die Strategie muss ein Ziel und einen "Fahrplan" beinhalten.

Organisatorisch ist die Verstetigungsstrategie im Bereich Klimaschutz verortet, analog zur Verantwortlichkeit für die Kommunale Wärmeplanung. Sie zeichnet für die Strategie und ihre Umsetzung verantwortlich. Da es sich bei der kommunalen Wärmeplanung um eine zukünftig verpflichtende Daueraufgabe handelt, muss eine ausreichende Ressourcenausstattung für die Maßnahmenumsetzung, das Controlling, die Einbindung der Akteure und die Fortschreibung gewährleistet sein.

Mit der Umsetzung des Wärmeplanungsgesetzes (Bund) in die Ländergesetzgebung, die im Laufe des Jahres 2025 erwartet wird, werden voraussichtlich auch anteilig Mittel für die Erstellung und perspektivisch die Fortschreibung der kommunalen Wärmeplanung, die sogenannten Konnexitätsmittel vom Land Niedersachsen zur Verfügung gestellt. Diese könnten dann voraussichtlich sowohl externe Kosten, z. B. für Gutachter,

decken, aber auch die Kosten für verwaltungsinterne Personalkosten decken. Zudem gilt es die dynamische Förderkulisse für Umsetzungsmaßnahmen zu nutzen und die Mittel für beispielsweise Beratungsangebote sicherzustellen.

Im Rahmen der Stakeholder-Workshops wurde vorgeschlagen, einen fortgeführten Austausch mit der Gemeinde zu pflegen. Als Aufgaben und Ziele wurden benannt,

- die kommunale Wärmeplanung in Glandorf weiterzuentwickeln,
- Projekte zu initiieren und
- bei der Umsetzung der Wärmewende mitzuwirken.

Die geschaffenen verwaltungsinternen Strukturen sollten mindestens jährlich fortgeführt werden, um intern den Fortschritt zu diskutieren. Ferner sind die Belange der kommunalen Wärmeplanung auf Arbeitsebene in Regelprozesse der Verwaltung zu integrieren. Neben der Integration in die Bauleitplanung ist – wie bereits praktiziert – die Beteiligung an formellen und informellen, räumlichen Planungsinstrumenten der Gemeinde oder die Beteiligung an Energiegesprächen vorzusehen.

Daneben beginnen die konkreten Planungen und Analysen der Vorrang- und Fokusgebiete. Insbesondere die Initiierung von Machbarkeitsstudien, die durch die BEW-Mittel gefördert werden, sind der nächste Schritt, um die identifizierten Vorranggebiete für eine leitungsgebundene Wärmeversorgung im Falle einer Wirtschaftlichkeit in die konkrete Projektrealisierung zu bringen.

Des Weiteren sollen die örtlichen Stakeholder vernetzt werden, um anstehende Maßnahmen im Sinne der kommunalen Wärmeplanung abzustimmen. Konkrete Beispiele sind die Projektentwicklung eines möglichen Wärmenetzes im Bereich Ortskern oder im Bereich des Gewerbegebietes. Insbesondere sollten aber auch die Möglichkeiten der industriellen und gewerblichen Abwärmenutzung kontinuierlich validiert werden (s. Kap. 2.3.2.7.1, EnEfG und Plattform für Abwärme des BAFA) oder bei der Entwicklung von Neubaugebieten die Ergebnisse der kommunalen Wärmeplanung berücksichtigt werden.

Im Bereich der Potenziale für die Wärmeerzeugung ist kontinuierlich zu prüfen, ob die zugrunde liegenden Ansätze angepasst werden müssen. Das betrifft neben den Abwärmepotenzialen, für die sich neue technologische oder regulatorische Rahmenbedingen ergeben können, vor allem auch die Potenziale für die erneuerbare Wärmeerzeugung. Die Nutzung von Geothermie könnte nach Erstellung entsprechender Studien ein neu zu bewertendes Potenzial darstellen. Bislang wird der Geothermienutzung in Glandorf eine untergeordnete Rolle zugeordnet.

Da derzeit kein synthetisches (grünes) Gas zur Verfügung steht, ist neben dem Bedarf die entsprechende mittel- und langfristige Verfügbarkeit kontinuierlich zu prüfen. In Kap. 3 wird modellbasiert der zukünftige Preis für synthetisches grünes Gas sowie eines Mischgases aus Erdgas und synthetischem Gas abgebildet. Es wird empfohlen, die

grundlegenden Annahmen fortlaufend zu prüfen, spätestens alle fünf Jahre im Rahmen der Fortschreibung des kommunalen Wärmeplans.

Ebenfalls kontinuierlich zu prüfen ist die Entwicklung der Gasnetzinfrastrukturen, insbesondere auch auf der übergeordneten Fernleitungsebene. Dabei ist die Entwicklung der Wasserstoffinfrastrukturen zu beachten ebenso wie die Entwicklung der Erdgasinfrastrukturen auf der Verteilnetzebene und damit die generelle Verfügbarkeit dieser Infrastrukturen. Vor dem Hintergrund stark steigender Gasnetznutzungsentgelte ist von einem starken Rückgang der Gasverbräuche auszugehen, die dann eine weitere Steigerung der Netzentgelte impliziert. Inwieweit Gasnetze mit den geänderten Rahmenbedingungen dann wirtschaftlich zu betreiben sind, ist kontinuierlich zu prüfen und liegt in der Verantwortlichkeit des Netzbetreibers.

5.3 Controlling-Konzept

Das Controlling-Konzept besteht aus zwei Säulen:

- Kontinuierliche Datenerfassung und -dokumentation
- Validierung des Umsetzungsgrades der vorgeschlagenen Maßnahmen

Die Erfassung und Dokumentation von Daten, die den Umsetzungsgrad der Wärmewende dokumentieren, ist elementar. Aufgrund der unterschiedlichen Datenquellen, die zur Verfügung stehen, ist zu empfehlen, jährlich einen Kurzbericht zur Umsetzung der Maßnahmen und der einfach zu erhebenden Daten zu erstellen. Die alle drei Jahre vorzulegenden Energieberichte für die öffentlichen Liegenschaften (NklimaG §17) sind zu berücksichtigen. Eine ausführliche und tiefergehende Überprüfung der Daten erfolgt im Rahmen der gesetzlich vorgesehenen fünfjährigen Überarbeitung der kommunalen Wärmeplanung. In den Berichten und Fortschreibungen sollten die Reduktionen der wärmeversorgungsbedingten THG-Emissionen, die sich beispielsweise aus den verbrauchten Energiemengen ableiten lassen, dokumentiert werden. Dies geschieht im Rahmen der wärmebezogenen Endenergie- und THG-Bilanz zur Fortschreibung des Wärmeplans.

Das Controlling-Konzept hat dafür Sorge zu tragen, dass die Maßnahmen, die im Wärmeplan erarbeitet wurden, auch tatsächlich zur Umsetzung gelangen. Sie müssen als Projekte geplant und geleitet werden. Zu jedem Projekt gehört ein Projektcontrolling, welches Zielerreichung, Qualität, Zeitpläne und Budgets im Blick behält. Auch wird die jährliche Dokumentation des Umsetzungsgrades der jeweiligen Maßnahmen empfohlen. Besonderes Augenmerk sollte dabei auf die Umsetzung des Ausbaus und vor allem der Neuerrichtung von Wärmenetzen gelegt werden.

Im Kern ist das "Lastenheft" für das Controlling-Konzept der Maßnahmenkatalog aus Kapitel 4.1. Für jede Maßnahme ist ein Monitoring sowie eine Berichterstattung, v. a. zu Maßnahmen in kommunaler Verantwortung, zu implementieren.

Ein wichtiger Gradmesser sind somit die Projekte, die in der Verantwortung der Gemeinde Glandorf selbst liegen. An erster Stelle stehen hier die Maßnahmen zur gezielten

Unterstützung der Bürgerschaft bei der Umsetzung der Wärmewende, aber auch flankierende Maßnahmen wie die energetische Sanierung kommunaler Liegenschaften, da diese bei der Umsetzung der Wärmewende eine Leuchtturmfunktion und daher eine herausragende Bedeutung haben.

Ein weiterer wichtiger Gradmesser der Wärmewende ist die Dokumentation der Sanierungen im Gebäudebestand. Da hier die Datenlage schwierig ist, ist die Erfassung des Sanierungsstandards der Gebäude im Rahmen der fünfjährigen Überprüfung der kWP durch eine Überarbeitung und Plausibilisierung des Wärmeatlas sinnvoll. Falls erforderlich wären bei einer Verfehlung der angesetzten Sanierungsraten und -tiefen entsprechend ergänzende Maßnahmen zu ergreifen. Generell sollten Maßnahmen auch bedarfsorientiert zwischen den fünfjährigen Berichtsintervallen angepasst, neu- bzw. weiterentwickelt werden.

5.4 Kommunikationsstrategie

Die Kommunikationsstrategie wurde bereits in einer frühen Projektphase entwickelt.

Ihre Aufgabe ist, neben der Information der Bevölkerung und der Förderung von Akzeptanz, die Kommunikation der Ergebnisse, die im Zwischen- und Endbericht dokumentiert werden. Die Kommunikation ist ein entscheidender Faktor zum Erfolg der kommunalen Wärmeplanung. Zu Beginn wurde sich daher in der Koordinierungsstelle darauf geeinigt, die Kommunikationskanäle sowohl der Gemeinde als auch der TEN zu nutzen.

Grundlegende sowie aktuelle Informationen zur kommunalen Wärmeplanung werden auf der Internetseite der Gemeinde Glandorf bzw. über eine entsprechende Verlinkung zur TEN bereitgestellt. Die Inhalte der Website werden kontinuierlich weiterentwickelt, um einen hohen Informationsgehalt zu bieten.

Weitere Informationen zur kommunalen Wärmeplanung wie auch zu den begleitenden Themen, z. B. energetische Sanierung, Angebote von Energiedienstleistungen, aktuell geltende Regelungen des GEG oder auch nutzbare Förderprogramme, werden auf den Formaten der Gemeinde bzw. der TEN veröffentlicht.

Zusätzlich zu den Anforderungen des Fördermittelgebers und entsprechend der Vorgaben des, noch nicht auf Landesebene geltenden, Bundes-Wärmeplanungsgesetzes wurde ein umfangreicher Zwischenbericht erstellt, der der Öffentlichkeit für Kommentierungen und Stellungnahmen zugänglich gemacht wurde (s. AP 5).

Die erfolgreich implementierten Kommunikationsformate zur Information der Bürgerinnen und Bürger über die kommunale Wärmeplanung und die nächsten geplanten Schritte sollten fortgeführt werden, ggf. auch mit Bürger-Informationsveranstaltungen. Zudem sieht das AP 4 dezidiert Maßnahmen zur Kommunikation und Beratung vor, die es fortlaufend umzusetzen gilt.

Besonderes Augenmerk sollte auf die Entwicklung der Vorranggebiete für Wärmenetze gelegt werden. Auf der Basis der bereits durchgeführten Detailanalysen sollte der Austausch mit den betroffenen Anwohnenden, Gebäudeeigentümerinnen und -eigentümern sowie Unternehmen intensiviert werden, damit im Falle einer Realisierung von Wärmenetzen hohe Anschlussquoten erreicht werden können.

6 Anhang

6.1 Anteil sonstiger Energieträger am Endenergieverbrauch

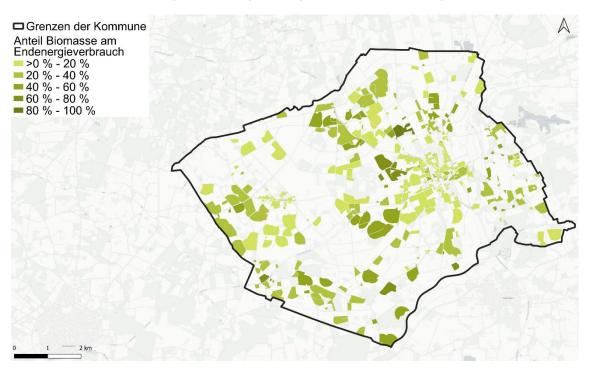


Abbildung 62: Anteil Biomasse am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen)¹

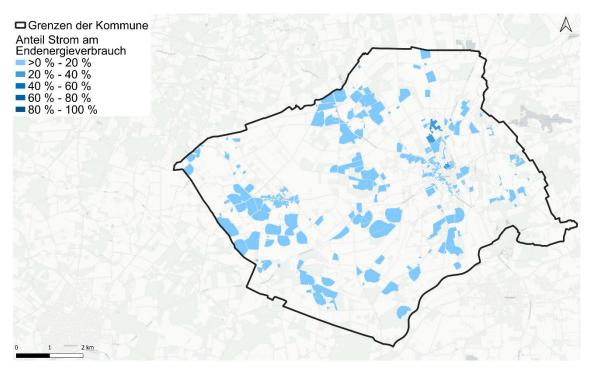


Abbildung 63: Anteil Strom am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen)¹

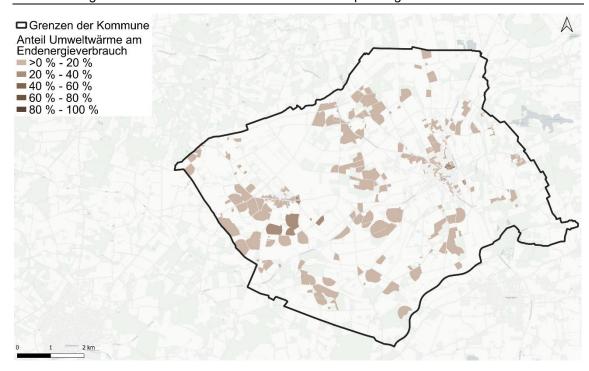


Abbildung 64: Anteil Umweltwärme am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen) ¹

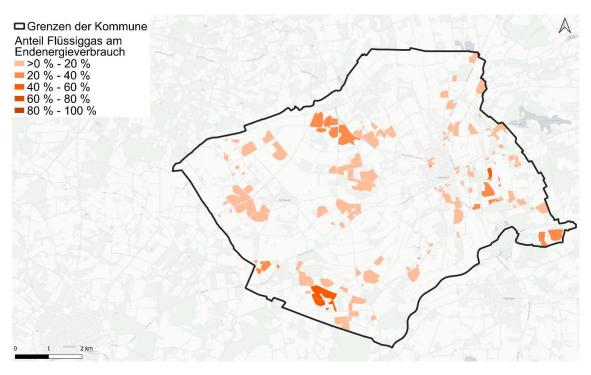


Abbildung 65: Anteil Flüssiggas am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen) ¹

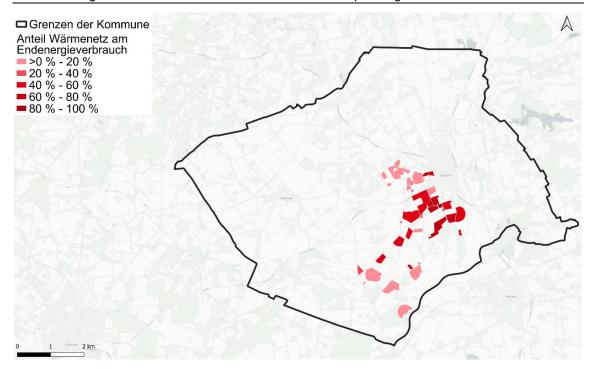


Abbildung 66: Anteil Wärmenetz am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen) ¹

Die zum Teil weitläufige Verteilung von Energieträgern auf Baublockebene (z.B. Wärmenetz) resultiert aus der DSGVO-konformen aggregierten Auswertung auf Baublockebene.

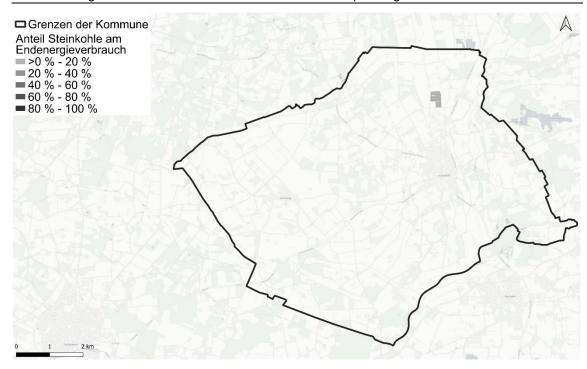


Abbildung 67: Anteil Steinkohle am Endenergieverbrauch in Glandorf (auf Baublöcke bezogen) ¹

6.2 Anzahl sonstiger dezentraler Wärmeerzeuger

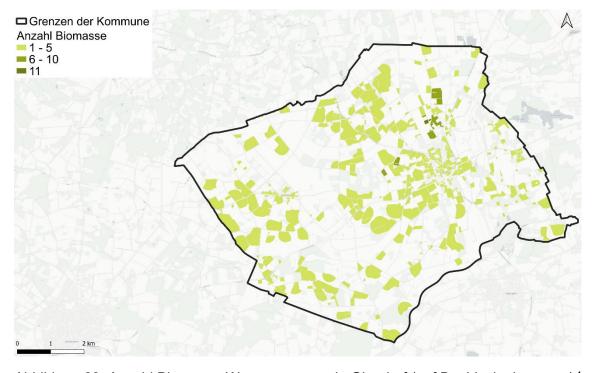


Abbildung 68: Anzahl Biomasse Wärmeerzeuger in Glandorf (auf Baublöcke bezogen) 1

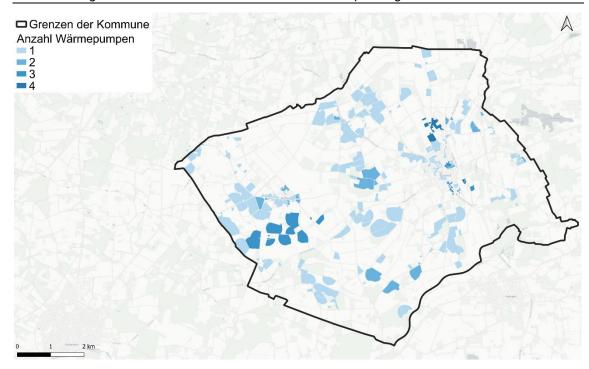


Abbildung 69: Anzahl Wärmepumpen in Glandorf (auf Baublöcke bezogen) 1

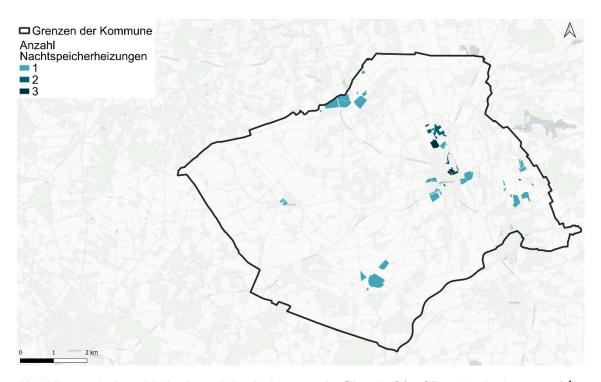


Abbildung 70: Anzahl Nachtspeicherheizungen in Glandorf (auf Baublöcke bezogen) 1

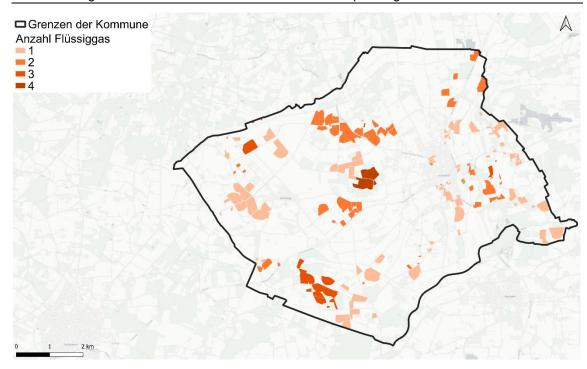


Abbildung 71: Anzahl Flüssiggas Wärmeerzeuger in Glandorf (auf Baublöcke bezogen)

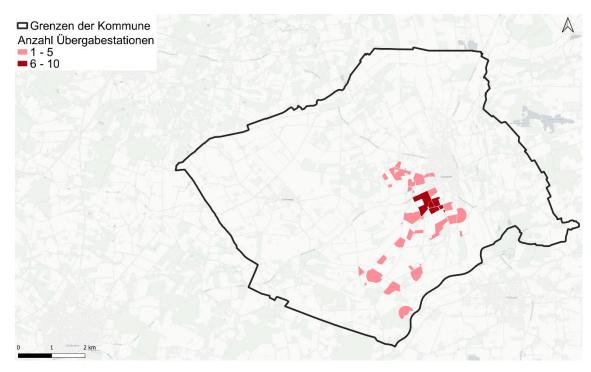


Abbildung 72: Anzahl Übergabestationen in Glandorf (auf Baublöcke bezogen) 1

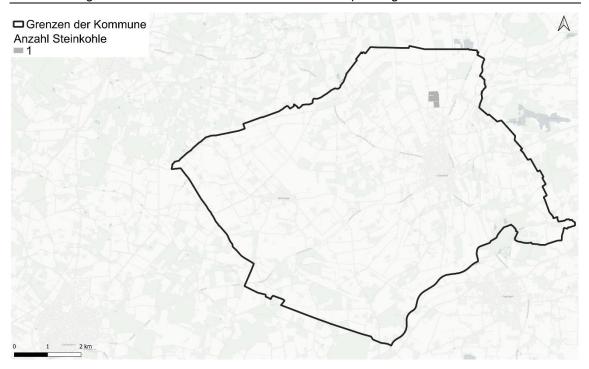


Abbildung 73: Anzahl Steinkohle Wärmeerzeuger in Glandorf (auf Baublöcke bezogen)

6.3 Ausschlussgebiete Freiflächenpotenziale

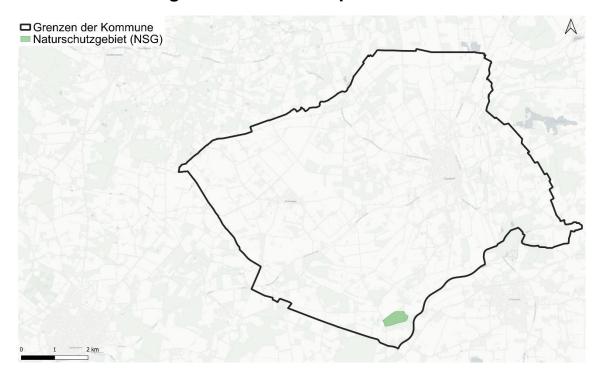


Abbildung 74: Ausschlussgebiete der Freiflächenpotenziale¹

Die Abbildung 74Abbildung 74: Ausschlussgebiete der Freiflächenpotenziale¹

Die Abbildung 74 zeigt die bei der Potenzialermittlung berücksichtigten Schutzflächen in der Form von Naturschutzgebieten, Trinkwasserschutzgebiete liegen nicht vor.

6.4 Wärmevollkostenvergleich der dezentralen Beheizungsoptionen

Typ 1: Einfamilienhaus NeuBestand (EFH A+- C)

Allgemein

- Freistehend oder als Reihenhaus, teilweise unterkellert
- Oft Satteldach, seltener Flachdach, helle, glatte Fassade, teilweise aber auch verklinkert
- Deckenhöhe beträgt in der Regel etwa 2,30 m.
- Gebäude erfüllen jeweilige WärmeschutzV oder EnEV (2-/3-Verglasung, Dämmung 5-10 cm)

Baualter: i.d.R. ab 2000

Gebäudeparameter	
Beheizte Fläche	150
Wärmebedarf	
Spezifische Heizung [kWh/(m ²a)]	46
Gesamt Heizung [MWh/a]	6,9
Spezifisch Warmwasser [kWh/(m²a)]	5
Gesamt Warmwasser [MWh/a]	0,7
Gesamtwärmebedarf [MWh/a]	7,6

Abbildung 75: Gebäudetyp 1 der KuTeK

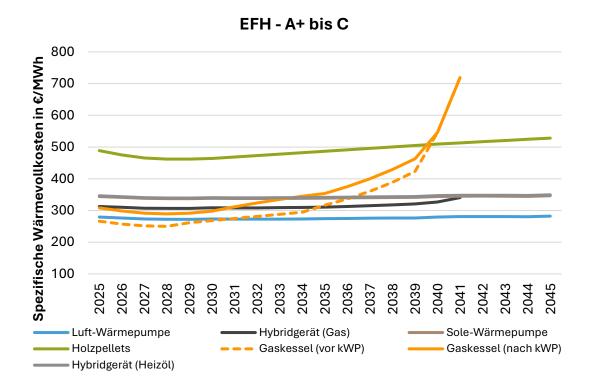


Abbildung 76: Wärmevollkosten je Technologie für ein Einfamilienhaus - A+ bis C (real 2024, ohne MwSt.)

Typ 2: Einfamilienhaus Bestand, teilmodernisiert (EFH D-F)

Allgemein Baualter: i.d.R. 1970-2000

- Meist freistehend, teilweise unterkellert (unbeheizt)
- Überwiegend gedämmtes Mauerwerk, wenig ungedämmtes Mauerwerk verklinkert
- Deckenhöhe beträgt in der Regel etwa 2,5 m.
- Im Bestand teilweise schon saniert (Fenster, Heizungsanlage), meist Fassade in Originalzustand

Gebäudeparameter

Beheizte Fläche 130

Wärmebedarf

Spezifische Heizung [kWh/(m ²a)] 98
Gesamt Heizung [MWh/a] 12,7
Spezifisch Warmwasser [kWh/(m²a)] 7
Gesamt Warmwasser [MWh/a] 0,9
Gesamtwärmebedarf [MWh/a] 13,6

Abbildung 77: Gebäudetyp 2 der KuTeK

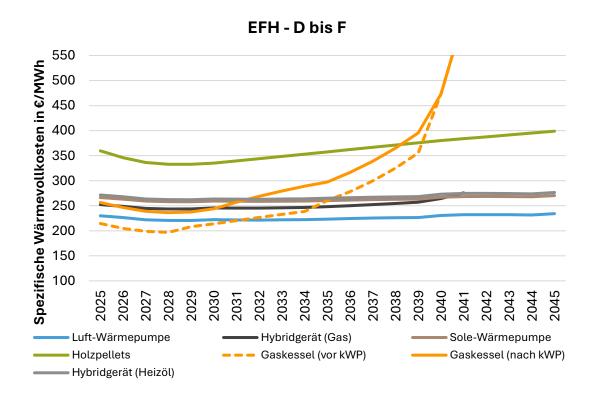


Abbildung 78: Wärmevollkosten je Technologie für ein Einfamilienhaus - D bis F (real 2024, ohne MwSt.)

Abbildung 79: Gebäudetyp 3 der KuTeK

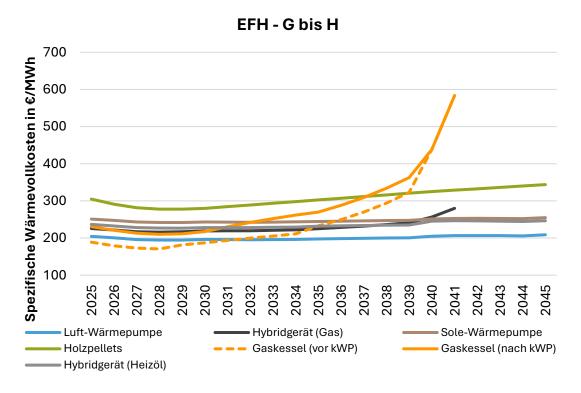


Abbildung 80: Wärmevollkosten je Technologie für ein Einfamilienhaus - G bis H (real 2024, ohne MwSt.)

Typ 4: Mehrfamilienhaus Neu-Bestand (MFH A+ - C)

Allgemein Baualter: i.d.R. ab 2000

- Freistehend oder als Reihenhaus, teilweise unterkellert
- Oft Satteldach, seltener Flachdach, helle, glatte Fassade, teilweise aber auch verklinkert
- Deckenhöhe beträgt in der Regel etwa 2,30 m.
- Gebäude erfüllen jeweilige WärmeschutzV oder EnEV (2-/3-Verglasung, Dämmung 5-10 cm)

	klein	mittel	groß
Gebäudeparameter			
Gesamtwohnfläche	306	790	2705
Wärmebedarf			
Spezifische Heizung [kWh/(m ²a)]	48	41	26
Gesamt Heizung [MWh/a]	14,6	32,4	70,0
Spezifisch Warmwasser [kWh/(m²a)]	3	3	1
Gesamt Warmwasser [MWh/a]	1,0	2,0	3,7
Gesamtwärmebedarf [MWh/a]	15,7	34,4	73,7

Abbildung 81: Gebäudetyp 4 der KuTeK in klein/mittel/groß

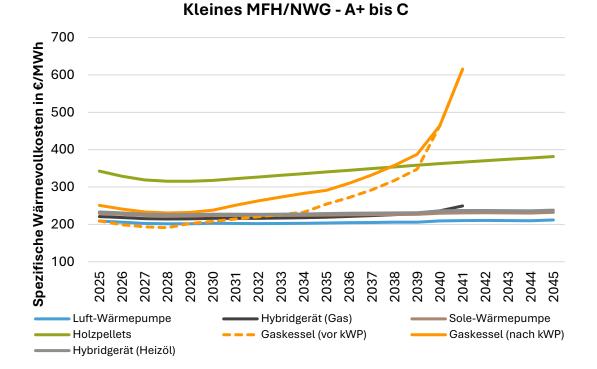


Abbildung 82: Wärmevollkosten je Technologie für ein kleines Mehrfamilienhaus - A+ bis C (real 2024, ohne MwSt.)

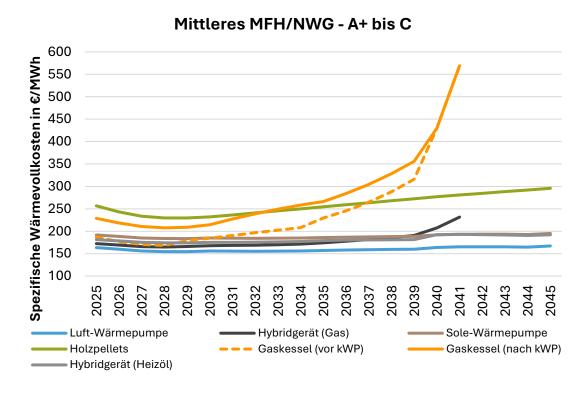


Abbildung 83: Wärmevollkosten je Technologie für ein mittleres Mehrfamilienhaus - A+ bis C (real 2024, ohne MwSt.)

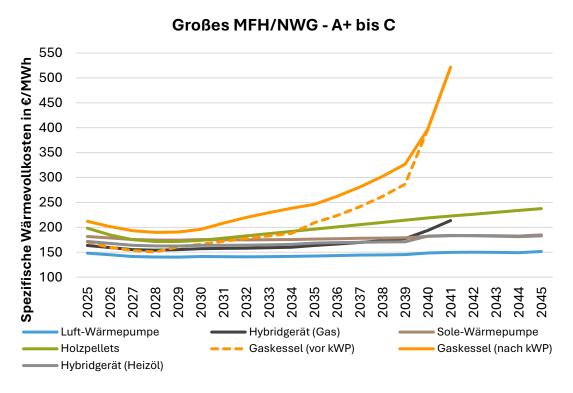


Abbildung 84: Wärmevollkosten je Technologie für ein großes Mehrfamilienhaus - A+ bis C (real 2024, ohne MwSt.)

Typ 5: Mehrfamilienhaus Bestand, teilmodernisiert (MFH D-F)

Allgemein

- Baualter: i.d.R. 1970-2000
- In der Regel schlichte Fassaden, aber oft Balkone
- Deckenhöhe im Inneren meist weniger als 3 m.
- Im Bestand teilweise schon saniert (Fenster, Fassade, Heizungsanlage)

	klein	mittel	groß
Gebäudeparameter			
Gesamtwohnfläche	274	723	1910
Wärmebedarf			
Spezifische Heizung [kWh/(m ²a)]	86	41	172
Gesamt Heizung [MWh/a]	23,5	32,4	327,6
Spezifisch Warmwasser [kWh/(m²a)]	7	3	10
Gesamt Warmwasser [MWh/a]	2,0	2,0	19,6
Gesamtwärmebedarf [MWh/a]	25,5	34,4	347,2

Abbildung 85: Gebäudetyp 5 der KuTeK in klein/mittel

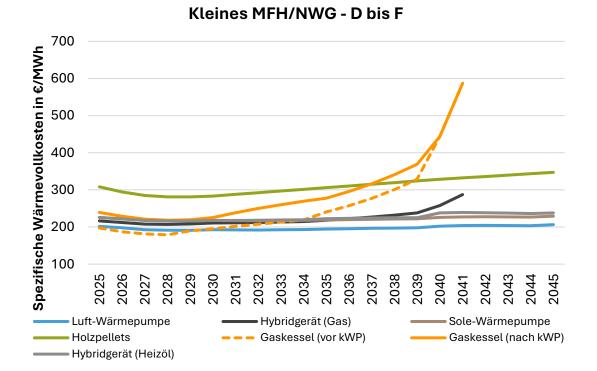


Abbildung 86: Wärmevollkosten je Technologie für ein kleines Mehrfamilienhaus - D bis F (real 2024, ohne MwSt.)

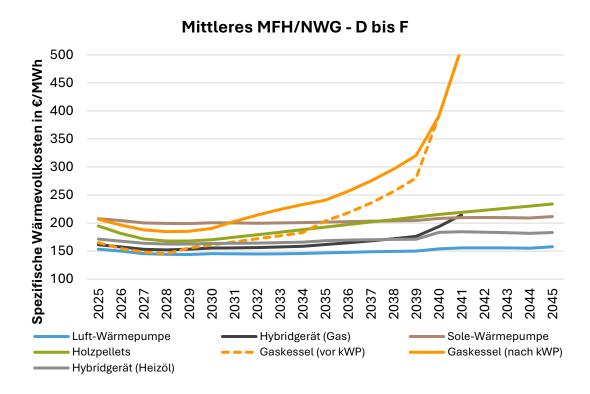


Abbildung 87: Wärmevollkosten je Technologie für ein mittleres Mehrfamilienhaus - D bis F (real 2024, ohne MwSt.)

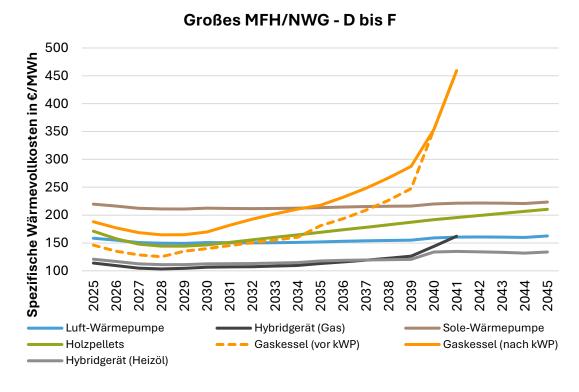


Abbildung 88: Wärmevollkosten je Technologie für ein großes Mehrfamilienhaus - D bis F (real 2024, ohne MwSt.)

Typ 6: Mehrfamilienhaus Alt-Bestand, wenig modern. (MFH G- H)

Allgemein

Baualter: i.d.R. vor 1970

- Teils Originalverglasung
- Deckenhöhe beträgt in der Regel etwa 2,30 m.
- Im Bestand nur wenig saniert (tw. Fenster, Heizungsanlage).
 Sanierungsoptionen aufgrund des Baualters aufwendig und/oder eingeschränkt

	klein	mittel	groß
Gebäudeparameter			
Gesamtwohnfläche	265	657	8763
Wärmebedarf			
Spezifische Heizung [kWh/(m ²a)]	98	106	98
Gesamt Heizung [MWh/a]	26,0	69,4	860,6
Spezifisch Warmwasser [kWh/(m²a)]	6	8	8
Gesamt Warmwasser [MWh/a]	1,6	5,2	66,4
Gesamtwärmebedarf [MWh/a]	27,6	74,6	927,0

Abbildung 89: Gebäudetyp 6 der KuTeK in klein/mittel

Kleines MFH/NWG - G bis H 700 Spezifische Wärmevollkosten in €/MWh 600 500 400 300 200 100 2038 Luft-Wärmepumpe Hybridgerät (Gas) Sole-Wärmepumpe Gaskessel (vor kWP) Gaskessel (nach kWP) Holzpellets - Hybridgerät (Heizöl)

Abbildung 90: Wärmevollkosten je Technologie für ein kleines Mehrfamilienhaus - G bis H (real 2024, ohne MwSt.)

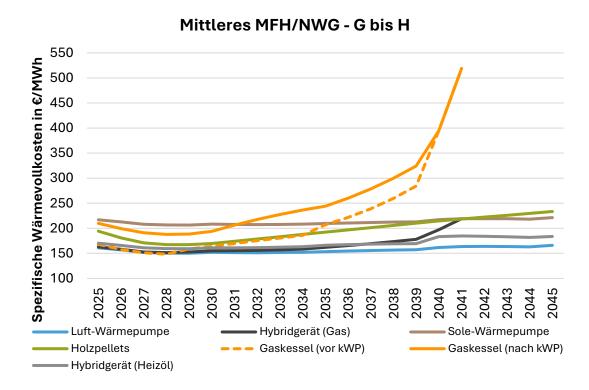


Abbildung 91: Wärmevollkosten je Technologie für ein mittleres Mehrfamilienhaus - G bis H (real 2024, ohne MwSt.)

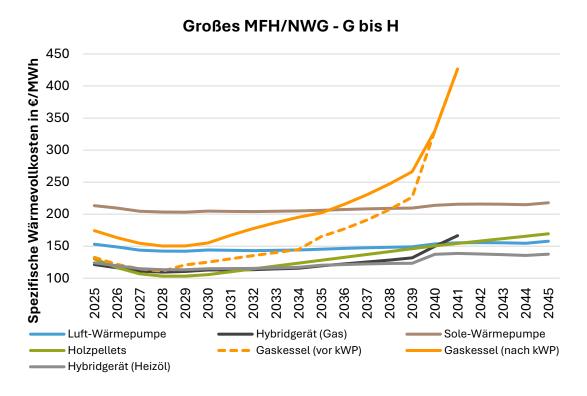


Abbildung 92: Wärmevollkosten je Technologie für ein großes Mehrfamilienhaus - G bis H (real 2024, ohne MwSt.)